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Abundance Estimation for Bilinear Mixture Models
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Abstract—Sparsity-based unmixing algorithms, exploiting the
sparseness property of the abundances, have recently been pro-
posed with promising performances. However, these algorithms
are developed for the linear mixture model (LMM), which cannot
effectively handle the nonlinear effects. In this paper, we extend
the current sparse regression methods for the LMM to bilinear
mixture models (BMMs), where the BMMs introduce additional
bilinear terms in the LMM in order to model second-order photon
scattering effects. To solve the abundance estimation problem
for the BMMs, we propose to perform a sparsity-based abun-
dance estimation by using two dictionaries: a linear dictionary
containing all the pure endmembers and a bilinear dictionary
consisting of all the possible second-order endmember interaction
components. Then, the abundance values can be estimated from
the sparse codes associated with the linear dictionary. More-
over, to exploit the spatial data structure where the adjacent
pixels are usually homogeneous and are often mixtures of the
same materials, we first employ the joint-sparsity (row-sparsity)
model to enforce structured sparsity on the abundance coefficients.
However, the joint-sparsity model is often a strict assumption,
which might cause some aliasing artifacts for the pixels that lie on
the boundaries of different materials. To deal with this problem,
the low-rank-representation model, which seeks the lowest rank
representation of the data, is further introduced to better capture
the spatial data structure. Our simulation results demonstrate that
the proposed algorithms provide much enhanced performance
compared with state-of-the-art algorithms.

Index Terms—Abundance estimation, bilinear model, hy-
perspectral imagery, low-rank representation (LRR), spectral
unmixing (SU).

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) has received consider-
able attention in the last few decades. With the wealth

of spectral information available, HSI has been successfully
applied to various domains such as agriculture, mineralogy,
and environment monitoring. However, because of the low
spatial resolution of current HSI sensors, several distinct pure
materials can jointly occupy a single pixel, causing critical
problems in the accurate interpretation of the image contents.
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Thus, the spectral unmixing (SU) problem, which consists of
identifying the pure materials (endmembers) and estimating
their associated fractions (abundances), has become a major
issue in HSI and has recently been extensively investigated
[1], [2].

Solving the SU problem usually consists of two major steps:
1) the pure endmember extraction and 2) the abundance estima-
tion. In the first step, all the possible pure endmembers should
be extracted from the hyperspectral image [3]. Many endmem-
ber detection algorithms extract the pure endmembers under
the pixel purity assumption that at least one pure pixel exists
for each endmember in the scene. These algorithms include
the pixel purity index [4], successive projection algorithm [5],
and vertex component analysis (VCA) [6]. Some researchers
have focused on the convex geometry of the hyperspectral data
that all the pixels lie in a convex hull in a high-dimensional
subspace. These studies include the simplex volume minimiza-
tion [7], [8], [9] and simplex volume maximization techniques
such as N-Finder [10], [11]. More recently, researchers try
to find the endmember signatures even if there are no pure
pixels existing by methods such as the nonnegative matrix
factorization [12], [13]. In our proposed abundance estimation
method, we assume that the pure endmembers are known or
they can be identified from the target image by one of these
endmember detection techniques. The second step consists of
estimating the corresponding abundances under some physical
constraints. In this step, the inherent source separation problem
should be efficiently solved under certain assumptions on the
mixture model [1], [2].

In the literature, the linear mixture model (LMM) has been
widely applied for abundance estimation due to its simplicity
and analytically tractable solutions. It assumes that the spectral
response of a pixel is a linear combination of all the pure
endmembers present in that pixel. To be physically meaningful,
it usually follows two constraints: the so-called abundance
nonnegativity constraint (ANC) and the abundance sum-to-one
constraint (ASC) [16]. Many different algorithms have been
proposed in the literature to estimate the abundances for the
LMM. These algorithms are based on the least squares princi-
ple [16], geometric formulation [17], and statistical inference
[18], [19].

Nonetheless, as pointed out in [1] and [2], due to the wide
existence of nonlinear effects caused by the interactions of
photons with multiple components in the image, the LMM
may not be an appropriate model in many practical situations.
Instead, nonlinear mixture models provide an interesting alter-
native for overcoming these inherent limitations. For instance,
in the case of intimate mixtures where there are microscopic
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photon interactions within the mixed materials, Hapke [20]
has demonstrated that the reflectance is a nonlinear function
of the apparent albedo. For multilayered mixtures where the
photons are scattered from one material into another before
reaching the sensor, various bilinear mixture models (BMMs)
have been introduced to capture such nonlinearities [21], [22].
For example, the generalized bilinear model (GBM), recently
studied in [23], generalizes the LMM by introducing bilinear
terms that take into account the multipath effects. Most recently,
the postnonlinear mixture model (PNMM) for source separa-
tion problems [24] has also been introduced for modeling the
nonlinearities in hyperspectral images [25]. Based on different
nonlinear model assumptions, various abundance estimation al-
gorithms have been proposed such as least squares [25], kernel-
based least squares [26], [27], and Bayesian methods [23].

However, none of these linear and nonlinear abundance
estimation algorithms has taken into account the sparsity con-
straint. Sparseness is an important property of the hyperspectral
imagery [13]–[15]. In most cases, every endmember does not
contribute to all the pixels in the scene. In other words, the
abundance of each endmember is localized, and each pixel is
a mixture of a few pure endmembers from the scene. To exploit
this property, in [28], Guo et al. have proposed a supervised l1-
regression algorithm for hyperspectral unmixing with a known
small-size dictionary. Similar to this method, most recently,
Iordache et al. [29] proposed a semisupervised sparse unmixing
algorithm which uses a selected overcomplete U.S. Geological
Survey (USGS) spectral library.1 The aforementioned papers
both take the sparsity property of abundances into account and
solve an l1-minimization problem using a dictionary made up of
pure endmembers. Because of the l1-norm regularization, they
produce sparser and more stable solutions than state-of-the-art
algorithms. However, these methods have their own problems
and limitations.

1) Because the endmembers are usually correlated, using
a huge overcomplete dictionary (around 500 pure end-
members) with a high mutual coherence might result in
unsatisfactory unmixing performances which was shown
in [29], let alone the computational burden due to the
large dictionary size.

2) These sparsity-based algorithms are only dedicated to the
LMM, which cannot effectively deal with the nonlineari-
ties caused by the multilayer light scattering effects.

With these considerations, we assume that the endmember
dictionary is known and of small size, which can be obtained
by an endmember extraction technique. Based on this assump-
tion, we propose a novel sparse regression-based approach to
estimate the abundances for the BMM. The BMM accounts for
the multiple light scattering effects by introducing an additional
bilinear term to the LMM. Therefore, we extend the linear
sparse regression method in [28] and [29] to the BMM by using
an additional bilinear dictionary, which takes into account all
the possible second-order bilinear interaction components of
the pure endmembers. We concatenate two dictionaries—the
original linear dictionary, which contains all the pure endmem-

1http://speclab.cr.usgs.gov/spectral-lib.html

bers, as well as the bilinear dictionary representing all the
bilinear components to form a so-called composite dictionary.
Since the components within the bilinear term are also linearly
combined, the overall problem still remains as a simple lin-
ear sparse regression task based on this composite dictionary,
which transforms the bilinear problem into a linear problem.
The new sparse regression problem can be efficiently solved
via the l1-minimization techniques. Among all the optimiza-
tion methods, we adopt the nonnegative constraint alternating
direction method of multipliers (ADMM) [30], which has been
demonstrated for its simplicity, efficiency, and robustness [31].
Once the sparse representation for each mixed pixel has been
obtained, the endmembers are identified, and their correspond-
ing abundances are immediately estimated from the sparse
codes associated with the linear dictionary.

Furthermore, recent research [32]–[36] has demonstrated
that the spatial information, which characterizes the relation-
ship between each pixel vector and its neighbors, can also
be incorporated into the unmixing algorithms to enhance the
performance of the abundance estimation. Specifically, with the
assumption that the abundance is piecewise smooth, Iordache
et al. [32] minimize the difference of abundances between
adjacent pixels by the total variation (TV) constraint. The TV
regularization requires a rather strict assumption that the abun-
dance of neighboring pixels is piecewise smooth, which means
that both the mixing material and its associated abundance
should be similar for adjacent pixels. The Laplacian graph
regularization [35], [36] minimizes the weighted difference of
two neighboring abundance vectors when the signatures of the
pixels are similar, by the assumption that, if two data points
are similar to each other, then their abundance representations
with respect to (w.r.t.) the dictionary should also be similar.
Iordache et al. [33] have introduced the joint-sparsity constraint
[37] to hyperspectral unmixing enforcing neighboring pixels
to have the same endmembers, due to the observation that
adjacent pixels usually consist of very similar endmembers in
the homogeneous region. Compared with the TV regulariza-
tion, the joint-sparsity constraint is less strict. It assumes that
neighboring pixels are made of similar materials but do not
necessarily have similar abundance for each material, which is
a more general assumption in the HSI.

Therefore, we use the joint-sparsity constraint to exploit
the spatial information for the bilinear abundance estimation
problem. To use the spatial structured sparsity in the data,
instead of recovering the abundance representation for each
single measurement vector (SMV) individually, we consider the
multiple measurement vector (MMV) problem [38] for a joint-
sparse regression, which enforces the sparse representations for
all the neighboring pixels to share the same support set. In
our proposed method, we enforce the joint-sparsity structure
on each target pixel and all of its eight neighbors in a 3 ×
3 sliding window. We slide the window through the whole
image one pixel at a time to estimate the abundance for every
pixel in the center of the window. To solve the joint-sparse
regression problem, we introduce a nonnegative constrained
MMV-ADMM algorithm which minimizes the l1,2-norm of the
abundance matrix that contains all the abundance vectors of
the pixels within the sliding window. Because the joint-sparsity
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model exploits both the spectral and the contextual information,
it further improves the abundance estimation performance.

Further investigation shows that the joint-sparsity model
might cause some undesirable misrepresentation artifacts
(called aliasing artifacts in this paper) for the pixels on the
boundaries between different regions when the materials are
distinct (see Fig. 2). In HSI, the high spatial similarity usually
implies the low column rank property of the data. This property
further indicates that the abundance representation matrix has
a low-rank characteristic rather than the strict row sparsity.
Recently, Liu et al. [39], [40] have proposed a novel low-
rank representation (LRR) technique for subspace clustering
problems, which jointly obtains a representation for all the
data under a global lowest rank constraint. To handle the
outliers in the data, they further introduce a sparse error matrix
to the model. In this paper, we modified the original LRR
model in [40] to solve the BMM-based abundance estimation
problem. First, the bilinear terms in BMMs are “analogous”
to the outliers in LRR, so we model the bilinear terms by a
bilinear matrix, factorizing it into a bilinear dictionary and its
associated bilinear representation. Second, because abundances
are required to satisfy the ASC and ANC, we enforce both of
these constraints on the proposed model. As the modified LRR
model better captures the spatial data structure than the joint-
sparsity model, it provides better abundance estimation results
compared with state-of-the-art techniques.

In summary, our main contributions in this paper are
twofold.

1) We introduce a simple but very effective sparsity-based
abundance estimation method for BMMs. Because all
the components in BMMs are linearly combined, we
propose to transform the bilinear problem into a linear
one by introducing a composite dictionary consisting of
a linear and a bilinear dictionary. The proposed method
shows much better estimation results than state-of-the-art
algorithms for BMMs.

2) We propose a generalized LRR model for the abundance
estimation problem which further exploits the spatial in-
formation in HSI. Because the high spatial correlation of
the data implies the low-rank property of the abundance
matrix, the proposed LRR model can better capture the
spatial data structure by seeking the lowest rank rep-
resentation, which shows much enhanced performance
in turn.

The rest of this paper is structured as follows. The LMM and
several BMMs are summarized in Section II. The new sparse
regression algorithm for BMMs is proposed in Section III.
In Section IV, the joint-sparsity model and its optimization
method are introduced. A modified LRR model is then pro-
posed in Section V. In Section VI, the effectiveness of the
proposed method is demonstrated by various experiments on
both synthetic and real data. Finally, we conclude this paper
with a few remarks in Section VII.

II. MIXTURE MODELS

Suppose that y = [y1, y2, . . . , yL]
T is an observed mixed

pixel of R pure endmembers with L spectral bands. We assume

that the dictionary A = [a1,a2, . . . ,aR] ∈ R
L×R in which

each column ar = [a1,r, a2,r, . . . , aL,r]
T (1 ≤ r ≤ R) is a pure

endmember vector. Let x = [x1, x2, . . . , xR]
T be an abundance

vector associated with the observed pixel y.

A. LMM

The underlying physical assumption of the LMM is that
each incident photon interacts with only one earth surface
component and that the reflected spectra are not scattered and
therefore do not mix before entering the HSI sensor. In this case,
the model can be described as

y =

R∑
i=1

aixi + n = Ax+ n (1)

where n = [n1, n2, . . . , nL]
T is an additive white noise se-

quence, which is usually assumed as an independent and iden-
tically distributed zero-mean Gaussian sequence with variance
σ2, denoted as n ∼ N (0, σ2I). To be physically meaningful,
the abundance vector x has to be nonnegative, and the summa-
tion of all its fractions is supposed to be one. Thus, it should
satisfy two constraints, i.e., ANC and ASC, respectively

ANC : xr ≥ 0, ∀r ∈ 1, 2, . . . , R

ASC :
R∑

r=1

xr = 1. (2)

The abundance coefficient vectors in all the following nonlinear
models are supposed to satisfy the two constraints in (2) as well.

B. Generalized BMM

To account for the presence of multiple photon bounces,
the BMM introduces an additional bilinear term to the LMM.
Specifically, the GBM [23] assumes that the observed pixel can
be expressed as

y = Ax+
R−1∑
i=1

R∑
j=i+1

γijxixjai � aj + n (3)

where γij(1 ≤ i ≤ j ≤ R) is a nonnegative coefficient that
controls the interaction between the ith and jth endmembers
in the mixed pixel y. Because a backscattered path is usually
longer than the corresponding direct reflection, the parameter
γij is constrained by

0 ≤ γij ≤ 1, i, j = 1, . . . , R, i �= j

where the symbol � denotes the Hadamard product operation

ai � aj =

⎛
⎜⎝

a1,i
...

aL,i

⎞
⎟⎠�

⎛
⎜⎝

a1,j
...

aL,j

⎞
⎟⎠ =

⎛
⎜⎝

a1,ia1,j
...

aL,iaL,j

⎞
⎟⎠ . (4)

From (2), we can see that 0 ≤ xk ≤ 1(∀1 ≤ k ≤ R). There-
fore, γijxixj is usually much smaller than unity. Thus, in GBM,
the total contribution of the bilinear components is small, and
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the linear part dominates the mixture. Furthermore, note that
GBM reduces to the Fan’s bilinear model (FM) studied in [42]
when γij = 1(1 ≤ i, j ≤ R, i �= j), and it degenerates to LMM
when γij = 0(1 ≤ i, j ≤ R, i �= j).

C. PNMM

The PNMM was recently proposed in [25] for modeling the
hyperspectral nonlinear mixtures. It can be described as

y = g(Ax) + n (5)

where g(·) should be an appropriate nonlinear function map-
ping from [0, 1]L into [0, 1]L. Various functions such as poly-
nomial and sigmoidal functions have shown the potential for
modeling the nonlinear mixtures. In [25], the authors consider
the second-order polynomial nonlinearity as

g : [0, 1]L → [0, 1]L

s →
[
s1 + bs21, . . . , sL + bs2L

]T
where s = [s1, · · · , sL]T and b is a parameter balancing the
nonlinear effects. As stated in [25], the particular choice of
second-order polynomial has the advantage of defining the
nonlinearity by a unique parameter b, whose value allows the
importance of the nonlinear terms to be characterized. Another
motivation is the Weierstrass approximation theorem, which
states that every continuous function defined on an interval
can be uniformly approximated by a polynomial with any
desired precision [41]. Thus, they propose a polynomial PNMM
(PPNMM) to model the nonlinearities as

y = Ax+ b(Ax)� (Ax) + n. (6)

The PPNMM differs from the previously introduced GBM
in that it considers not only the interaction products between
endmembers but also the self-products of each endmember.
Hence, it models the scattering among different endmembers
as well as within each material (see Fig. 1). However, although
the single parameter b makes PPNMM much easier to estimate,
it might not be as flexible as GBM in characterizing the strength
of the contributions for different bilinear components.

D. MGBM

From (3) and (6), we can see that both the GBM and PPNMM
have their inherent limitations.

1) The PPNMM differs from the previously introduced
GBM in that it considers not only the interaction products
between endmembers but also the self-products of each
endmember. Hence, it can model the scattering effects
within each material, where GBM cannot (see Fig. 1).
However, although the single parameter b makes PP-
NMM much easier to estimate, it might not be as flexible
as GBM in characterizing the strength of contributions for
different bilinear components.

2) Both GBM and PPNMM make the assumption that a
nonlinearly mixed pixel only contains bilinear terms in-

Fig. 1. Second-order multipath scattering effects in nonlinear mixing. The red
and yellow lines denote the incident and the directly reflected light, respectively.
The blue and green lines indicates the backscattered lights within and among
the materials in order. The black line is the light from the reflection from the
adjacent pixel.

volving the endmembers which have nonzero linear abun-
dance. However, in some scenarios, such an assumption
might not hold. For instance, the reflections of materials
(i.e., buildings) from a neighboring pixel might interact
with the materials in the target pixel and therefore con-
tribute to its bilinear terms. However, since the materials
are not located in the target pixel, it will have a zero
linear abundance. However, neither GBM nor PPNMM
can handle such cases.

To address these limitations, we consider a modified GBM
(MGBM) as follows:

y = Ax+

R∑
i=1

R∑
j=i

ζijai � aj + n (7)

where 0 ≤ ζij 
 1(1 ≤ i, j ≤ R). The proposed model in (7)
is a more general model compared with GBM and PPNMM:
1) It considers the polynomial terms ai � ai(1 ≤ i ≤ R), and
thus, it can model the self-scattering effects; and 2) it does
not force the assumption that ζij = γijxixj(1 ≤ i, j ≤ R) as
in GBM and PPNMM, and thus, it can handle the situations
when the reflections from a neighboring pixel contribute to the
bilinear terms but not to the linear abundance term of the target
pixel.

III. SPARSE ABUNDANCE ESTIMATION METHOD

A. Sparse Linear Regression via SMV-ADMM

Recent research in [28] and [29] shows that the abundance
estimation problem can be formulated as a linear sparse regres-
sion problem and could be efficiently solved under the sparse
representation [43] framework. Specifically, with a given dic-
tionary A and a mixed pixel y, we can formulate the problem as

min
x

‖x‖0, s.t.‖y −Ax‖2 ≤ ε1

x ≥ 0,1Tx = 1 (8)
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where ‖ · ‖0 denotes the l0-norm, which is defined as the
number of nonzero entries in the vector of interest, and ε1 ≥ 0
is the error tolerance level due to noises and various modeling
errors. This problem is nonconvex and generally NP-hard to
solve. Instead, if the solution is sufficiently sparse, it can be
relaxed to a linear programming problem by replacing the
l0-norm with the l1-norm. However, because the abundance
vector is constrained by both ASC and ANC, its l1-norm
remains as a constant equaling to unity, rendering the whole
l1-minimization problem meaningless. Therefore, in [28] and
[29], they propose to relax ASC and solve an equivalent lasso
problem [44] with only the nonnegative constraint

min
x

1

2
‖y −Ax‖22 + λ1‖x‖1, s.t.x ≥ 0 (9)

where ‖x‖1 =
∑R

i=1 |xi| and λ1 > 0 is actually a Lagrangian
multiplier with λ1 → 0 as ε1 → 0. This optimization problem
is convex and can be solved by the current l1-minimization
techniques such as the nonnegative constraint split Bregman
method [45] and SMV-ADMM algorithm [46] (named
CSUnSAL+ in [29]). The differences between the two
approaches are as follows.

1) In [28], they tried to solve an overconstrained l1-
regression problem with a “tall and thin” dictionary
A(s.t. L > R), which is also known as a least absolute
deviations problem. The dictionary A consists of the pure
endmembers detected by the N-Finder algorithm [10].
The solution of this problem is known to be robust and
less sensitive to the presence of noise and outliers [47].

2) Iordache et al. [29] proposed to solve a sparse recovery
problem with a “short and fat” dictionary A(s.t. L < R)
under the l1 constraint. They propose to use a huge dictio-
nary A, which consists of selected pure endmembers in
the USGS library. From the compressed sensing theory
[43], to guarantee the uniqueness of the sparsely recov-
ered solution for an underdetermined system, the matrix
A is required to have low mutual coherence μco(A),
which is defined as

μco(A) = max
1≤i,j≤R,i�=j

∣∣aTi aj∣∣
‖ai‖2‖aj‖2

. (10)

However, in practice, the pure endmembers tend to be
similar and highly correlated, rendering the coherence of
the dictionary μco(A) to be large. As it has been shown in
[29], even with the pruned USGS dictionary, the mutual
coherence of the matrix μco(A) nearly equals to unity
(i.e., μco(A) = 0.9986). In such cases, even though the
abundance vector may be very sparse, the uniqueness of
the solution cannot be guaranteed. Hence, the unmixing
result might not be accurate.

Therefore, in our proposed method, we solve an
overconstrained l1-regression problem, where the endmember
dictionary A is made up of pure endmembers extracted by the
VCA [6] from the hyperspectral image itself.

To solve the problem (9), we introduce and adopt the nonneg-
ative SMV-ADMM algorithm due to its efficiency and robust-

ness. First, we introduce an auxiliary variable z and transform
the problem as follows:

min
x,z

1

2
‖y −Ax‖22 + λ1‖z‖1

s.t. x− z = 0, z ≥ 0 (11)

then, the corresponding augmented Lagrangian function w.r.t.
x and z can be formed as

Lμ1
(x, z, t) =

1

2
‖y −Ax‖22 + λ1‖z‖1

+ < t,x− z > +
μ1

2
‖x− z‖22 (12)

where t is the Lagrangian multiplier for the equality constraint
x− z = 0 and μ1 > 0 is a penalty parameter. Function (12)
is constrained by z ≥ 0; it can be minimized w.r.t. x and z
iteratively by fixing one of the variables and updating the other.
The entire algorithm is summarized in Algorithm 1, where we
replace the variable t by τ = t/μ1 to simplify all the equations.

Algorithm 1 Nonnegative SMV-ADMM

Input: The observation y, the endmember dictionary A, and
the balancing parameter λ1;

Output: The estimated abundance x̂;
1: Initialize: x0, z0, τ 0, μ1, k = 0;
2: while not converged do
3: Fix z and update x by:

xk+1 = argmin
x

Lμ1
(x, zk, τ k)

= (ATA+ μ1I)
−1

(
ATy + μ1(z

k − τ k)
)

4: Fix x and update z by:

zk+1 = argmin
z≥0

Lμ1
(xk+1, z, τ k)

= argmin
z≥0

λ1‖z‖1 +
μ1

2

∥∥z− (xk+1 + τ k)
∥∥2
2

= max
[
Sλ1/μ1

(xk+1 + τ k), 0
]

5: Update the Lagrangian multiplier τ :

τ k+1 = τ k + xk+1 − zk+1

6: Update k : k = k + 1.
7: end while
8: return x̂ = zk.

In Step 3, note that, with μ1 > 0, ATA+ μ1I is always in-
vertible, so updating x is essentially a ridge regression problem.
To update the variable z, the subproblem in Step 4 is solved by
a soft-shrinkage thresholding operator Sκ1

(·) [48] introduced
in the following lemma.

Lemma 1: Consider the following optimization problem:

θ∗ = argmin
θ

κ1‖θ‖1 +
1

2
‖θ − c‖22 (13)
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where θ∗ ∈ R
n is the optimal solution vector, c is a constant

vector of the same size as θ∗, and κ1 > 0 is a penalty parameter.
Then, the ith component θ∗i of vector θ∗ should be

θ∗i = Sκ1
(ci) =

{
ci − κ1, if ci > κ1

0, if |ci| ≤ κ1

ci + κ1, if ci < −κ1

(14)

where ci is the ith component of c and Sκ1
(·) is a soft-shrinkage

thresholding operator with threshold κ1.
Remark 1: Stopping criteria: In the ADMM algorithm, we

usually use the primal residue rp and dual residue rd as the
indicators of convergence

rkp = ‖xk − zk‖2

rkd =μ1‖zk+1 − zk‖2.

The algorithm stops when both the residues are smaller than
certain preset tolerances. Otherwise, the algorithm stops when
the maximum iteration is reached.

B. Extension to Nonlinear Abundance Estimation Problem

1) Problem Transformation Under ANC: By carefully ex-
amining (7), it is interesting to note that MGBM can be seen as
the LMM with R original endmembers and R∗ = (1/2)R(R+
1) correlated endmembers. More specifically, by considering
each second-order spectral term ai � aj(1 ≤ i ≤ j ≤ R) as a
new spectral component associated with the fraction ζij , the
model can be rewritten as a linear combination of all spectra

y =
R∑

k=1

xkak +
R∗∑
l=1

elbl + n (15)

where

el = ζij ,bl = ai � aj

l = j +
(2R− i)(i− 1)

2
, 1 ≤ i ≤ j ≤ R. (16)

If we define the bilinear dictionary and its correspond-
ing bilinear representation as B = [b1,b2, . . . ,bR∗ ] and e =
[e1, e2, . . . , eR∗]

T , respectively, then we can rewrite (15) as

y =Ax+Be+ n

= [A,B]

[
x
e

]
+ n

=Mφ+ n. (17)

Here, M = [A,B] is a composite dictionary and φ =
[xT , eT ]T is the corresponding composite representation.
Therefore, the bilinear abundance estimation problem can be
transformed and solved in the sparse linear regression frame-
work as

min
φ

1

2
‖y −Mφ‖22 + λ′

1‖φ‖1, s.t. φ ≥ 0 (18)

where λ′
1 > 0. This new sparse regression problem can still be

efficiently solved by the nonnegative constraint SMV-ADMM
algorithm in the same manner. Once the recovered sparse
code φ̂ = [x̂T , êT ]T is obtained, the pure endmembers will be

identified, and their associated abundances can be estimated
from the vector x̂. Hence, we can effectively get rid of the
small annoying bilinear components in MGBM and accurately
identify and predict the abundances for the linear combinations.

2) Enforcing the ASC: Compared with the original prob-
lem in (9) for LMM, the extended problem (18) for BMM
minimizes the l1-norm of the composite sparse representation
φ rather than ‖x‖1. Although the ASC in (9) could not be
enforced as explained in Section III-A, in (18), the ASC could
be partially enforced on the abundance vector x instead of the
entire composite abundance φ. Therefore, we could add the
ASC to (18) as

min
φ

1

2
‖y −Mφ‖22 + λ′

1‖φ‖1

s.t. φ ≥ 0,kTφ = 1 (19)

where k = [1T ,0T ]T (1 ∈ R
R, and 0 ∈ R

R∗
). Instead of di-

rectly solving the equality constraint problem in (19), we solve
the following relaxed problem instead:

min
φ≥0

1

2

∥∥∥∥
[
y
δ1

]
−
[

M
δ1k

T

]
φ

∥∥∥∥
2

2

+ λ′
1‖φ‖1 (20)

where δ1 > 0 is a regularization parameter and (20) is still a
nonnegative constraint sparse regression problem that can be
efficiently solved by the nonnegative constraint SMV-ADMM
algorithm. Therefore, the ASC, which could not be enforced
under the LMM [28], [29], now can be incorporated in our pro-
posed new framework. In Section VI-C, we demonstrate on the
synthetic data that the abundance estimation performance could
be further improved with the ASC and qualitatively analyze
the choice of the parameter δ1. Some theoretical analysis for
choosing the optimal δ1 remains for the future work.

For the real hyperspectral images, the effects of ASC need
to be further studied. Sometimes, the ASC is prone to some
criticisms for being a too strict constraint [28], [29]. Without
the ground truth of the abundance information for the real data,
the validation of the ASC still remains as a problem.

IV. JOINT-SPARSITY MODEL FOR

ABUNDANCE ESTIMATION

Following the notations in the previous section, now let Y =
[y1,y2, . . . ,yN ] ∈ R

L×N be an observation matrix, which
contains N bilinear mixed pixels within a sliding window of
fixed size, and let X = [x1,x2, . . . ,xN ] ∈ R

R×N and E =
[e1, e2, . . . , eN ] ∈ R

R∗×N be the linear and bilinear abundance
representation matrices associated with the dictionaries A and
B, respectively.

A. Problem Formulation

Expecting adjacent pixels in a small sliding window to
have very similar endmembers, we enforce a joint-sparse
representation on the abundance matrix Φ = [XT ,ET ]T =
[φ1,φ2, . . . ,φN ] ∈ R

(R+R∗)×N which contains the target
pixel and its neighbors, where all abundance vectors φi(1 ≤
i ≤ N) should have the same support set and satisfy Y = MΦ.
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We slide the window through the whole image one pixel at a
time to estimate the abundance for every pixel in the center of
the window. To seek a row-sparse solution for each Φ, we need
to minimize the number of nonzero rows in matrix Φ. Thus, the
problem can be formulated as follows:

min
Φ

‖Φ‖0,2, s.t.‖Y −MΦ‖F ≤ ε2

Φ ≥ 0,kTΦ = 1T (21)

where ‖Φ‖0,2 provides a measure for the number of “active”
rows in Φ that contain nonzero entries, ‖ · ‖F is the Frobenius
norm, ε2 > 0 is the noise tolerance, and 1 ∈ R

N . Similar to
the l0-minimization problem in (7), this problem is also a com-
binatorial optimization problem and thus NP-hard in general.
The same as the case in (19), the matrix l0,2-norm in (21) can
be replaced by the matrix l1,2-norm. Thus, the problem can be
reformulated as

min
Φ≥0

1

2

∥∥∥∥
[

Y
δ21

T

]
−
[

M
δ2k

T

]
Φ

∥∥∥∥
2

F

+ λ2‖Φ‖1,2 (22)

where δ2 > 0 and λ2 > 0 are the regularization parameters,
‖Φ‖1,2 =

∑R+R∗

i=1 ‖φi‖2, and φi ∈ R
N is the ith row of the

matrix Φ. This problem (22) now is convex and can be ef-
ficiently solved by the nonnegative constraint MMV-ADMM
algorithm proposed in the next section. Once the composite
sparse representation Φ̂ = [X̂T , ÊT ]T is derived, the abun-
dances for each pixel can be obtained from X̂.

Remark 2: Discussion on the limitation of the joint-sparse
constraint: The proposed joint-sparsity assumption forces all
the pixels in the sliding window to share the same support set.
The joint-sparsity constraint is effective for unmixing homoge-
neous regions, where most of the pixels consist of very similar
types of endmembers. However, when the sliding window con-
tains subpixel targets or noncontiguous materials, such a strict
spatial constraint might limit the ability to accurately estimate
the proportions of endmembers (see Fig. 2).

B. Recovery of Jointly Sparse Abundance Vectors via
MMV-ADMM Algorithm

In this section, we introduce the MMV-ADMM algorithm to
solve the following problem:

min
Φ≥0

1

2
‖Y −MΦ‖F + λ2‖Φ‖1,2. (23)

It should be noticed that the problem (22) is exactly in the form

of (23) if we let Ŷ =

[
Y

δ21
T

]
and M̂ =

[
M

δ2k
T

]
and reformu-

late the objective function as (1/2)‖Ŷ − M̂Φ‖F + λ2‖Φ‖1,2.
Similar to the SMV-ADMM algorithm, we first introduce an

auxiliary matrix variable Z ∈ R
(R+R∗)×N and transform the

problem into

min
Φ,Z

1

2
‖Y −MΦ‖2F + λ2‖Z‖1,2

s.t. Z ≥ 0,Φ− Z = 0. (24)

Thus, the augmented Lagrangian function of (24) w.r.t. Φ and
Z can be formed as

Lμ2
(Φ,Z,T) =

1

2
‖Y −MΦ‖2F + λ2‖Z‖1,2

+ < T,Φ− Z > +
μ2

2
‖Φ− Z‖2F (25)

where μ2 > 0 is a penalty parameter, T ∈ R
(R+R∗)×N is a ma-

trix of Lagrangian multipliers, and we let Λ = T/μ2. Similarly,
we minimize the augmented Lagrangian function iteratively
by fixing one variable and updating the other. The complete
algorithm is summarized in Algorithm 2.

Algorithm 2 Nonnegative MMV-ADMM

Input: The pixel array {Y}, the composite dictionary Φ, and
the balancing parameter λ2;

Output: The estimated abundance X̂;
1: Initialize: Φ0,Z0,Λ0, μ2, k = 0;
2: while not converged do
3: Fix Z and update Φ by:

Φk+1 = argmin
Φ

Lμ2
(Φ,Zk,Λk)

= (MTM+ μ2I)
−1

(
MTY + μ2(Z

k −Λk)
)

4: Fix Φ and update Z by:

Zk+1 = argmin
Z≥0

Lμ2
(Φk+1,Z,Λk)

= argmin
Z≥0

λ2‖Z‖2,1 +
μ2

2

∥∥Z− (Φk+1 +Λk)
∥∥2
2

= max
[
S∗
λ2/μ2

(Φk+1 +Λk), 0
]

5: Update the Lagrangian multiplier Λ:

Λk+1 = Λk +Φk+1 − Zk+1

6: Update k: k = k + 1.
7: end while
8: return[X̂T , ÊT ]T = k.

Compared with the SMV-ADMM algorithm, here, we try to
recover a row-sparse matrix jointly rather than reconstruct each
sparse vector individually; therefore, the Z updating in Step 4 is
solved by the row-shrinkage thresholding operator S∗

κ2
(·) [49]

introduced in the following lemma instead.
Lemma 2: Consider the following optimization problem:

Θ∗ = argmin
Θ

κ2‖Θ‖1,2 +
1

2
‖Θ−C‖2F (26)

where Θ∗ ∈ R
m×n is the optimal solution matrix, C is a

constant matrix of the same size as Θ∗, and κ2 > 0 is a penalty
parameter. The minimizer of (26) is given by

Θ∗ = S∗
κ2
(C)
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Fig. 2. Results of the estimated abundance matrix X and bilinear coefficient matrix E for the SMV-ADMM, MMV-ADMM, and LRR methods. The first row
shows the ground-truth and estimated abundance matrices, and the second row shows the ground-truth and estimated bilinear coefficient matrices. From left to
right are the original data and the results from SMV-ADMM, MMV-ADMM, and LRR, respectively.

where the function S∗
κ2
(·) is defined as follows: Let the ith rows

of matrices Θ∗ and C be θi∗ and ci, respectively; then

θi∗ = S∗
κ2
(ci) =

{
‖ci‖2−κ2

‖ci‖2 ci, if κ2 < ‖ci‖2
0, otherwise.

(27)

V. LRR MODEL FOR ABUNDANCE ESTIMATION

A. Problem Formulation

In the previous section, the joint-sparsity model is intro-
duced for the abundance estimation problem, which exploits
the structured sparsity of the abundances between neighboring
pixels. However, as has already been analyzed in Remark 2,
the joint-sparsity model introduces some aliasing artifacts on
the boundaries when the neighboring pixels consist of different
endmembers. Therefore, instead of using the row-sparsity prop-
erty of the abundance matrix, we further propose to exploit its
rank property by the following theorem [50].

Theorem 1: Assume matrices Y ∈ R
L×N , A ∈ R

L×R, and
X∈ R

R×N which satisfy Y=AX. If rank (Y )=k ≤ min(R,
N) and rank(A) = R, then we have

rank(X) = rank(Y) = k. (28)

According to the aforementioned theorem, our dictionary A
usually satisfies the full column rank property as the extracted
pure endmembers are generally distinct from each other and
the dimension of hyperspectral data L is larger than the total
number of endmembers R. If the columns of Y are highly
correlated, which means that the matrix Y is a low-rank matrix,

it further indicates that the corresponding representation matrix
X is also low rank.

To use this property, we employ the recently proposed LRR
model [39], [40] for our joint abundance estimation problem.
LRR seeks the lowest rank representation of the abundance
matrix to capture the spatial structure of the data jointly.
From Fig. 2, we can see that the proposed LRR algorithm
can alleviate the aliasing problem caused by the strict row-
sparsity regularization. Next, we introduce our LRR algorithm
for solving the joint abundance estimation problem.

Starting with the simple LMM, for the given data Y, we seek
a low-rank abundance representation X with ANC by solving
the following optimization problem:

X∗ = argmin
X

rank(X), s.t. X ≥ 0

Y −AX = 0,X ≥ 0,1TX = 1T (29)

where 1 ∈ R
N and X∗ is the lowest rank solution with the ASC

and ANC constraints.
For the abundance estimation problem of MGBM, we factor-

ize the bilinear terms into a bilinear dictionary B ∈ R
L×R∗

and
its associated sparse bilinear abundance matrix E ∈ R

R∗×N .
Thus, we propose to solve a dual representation problem for
MGBM as

min
X≥0,E≥0

rank(X) + λ3‖E‖0

s.t. Y −AX−BE = 0,1TX = 1T (30)

where λ3 > 0 is a parameter used to balance the effects of the
two terms.
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If we choose r < R endmembers for MGBM, then the
number of bilinear coefficients for one pixel that are nonzero is
r∗ = (r(r + 1))/(2) 
 R∗. Therefore, E is definitely a sparse
matrix. We do not enforce the low-rank regularization on E
because E is much sparser than X and LRR will produce
“denser” results than the l0-norm constraint [51]. Here, we
have chosen to enforce the l0-norm regularization on E instead
of matrix l0,2-norm (joint-sparsity constraint) for two reasons:
1) We have analyzed the performance of the joint-sparsity
model on the synthetic data, and it causes some aliasing arti-
facts on the boundaries between two inhomogeneous regions;
and 2) the computational cost for joint sparsity is higher,
and simulation results on real HSI data show little difference
between the two norms.

However, the aforementioned optimization problem (30) is
still difficult to solve due to the discrete nature of the rank
function and the nonconvexity of the l0-norm. Fortunately,
according to our previous discussion in Section III, the l0-norm
can be replaced by the l1-norm, and as suggested by the matrix
completion methods [52], the nuclear norm [53] provides a
good surrogate for the matrix rank function. Hence, instead of
(30), we seek the solution of an alternative problem as follows:

min
X≥0,E≥0

‖X‖∗ + λ3‖E‖1

s.t. Y −AX−BE = 0,1TX = 1T (31)

where ‖ · ‖∗ denotes the nuclear norm of a matrix defined as

‖X‖∗ = trace(
√
XTX) =

min{R,N}∑
i=1

σi (32)

here, σi(0 ≤ i ≤ min{R,N}) are singular values of the abun-
dance matrix X. To handle ASC, we solve the following
problem instead:

min
X≥0,E≥0

‖X‖∗ + λ3‖E‖1

s.t.

[
Y

δ31
T

]
−
[

A
δ31

T

]
X−

[
B
0T

]
E = 0 (33)

where δ3 > 0. The problem stated in (33) is convex, and it
can be efficiently solved by state-of-the-art convex optimization
techniques. Moreover, a close examination of (31) reveals that,
if we let B = I, then the problem degenerates to the original
LRR problem introduced in [40] under the constraints of ASC
and ANC. Hence, our problem is a more general case of the
original LRR model.

B. Low-Rank Abundance Estimation by Convex Optimization

In this section, we try to solve the following problem:

min
X≥0,E≥0

‖X‖∗ + λ3‖E‖1

s.t. Y −AX−BE = 0. (34)

Similar to our discussion for the nonnegative MMV-ADMM
algorithm, the original problem in (33) is in the same form as

(34). In [40], the original LRR problem is solved by inexact
augmented Lagrangian method (IALM) [54]. However, because
the sparse error matrix in the original LRR model has to be
factorized into a bilinear dictionary B and an associated bilinear
representation E in (34), the original optimization algorithm
needs to be modified. By adding two auxiliary matrices P ∈
R

R×N and Q ∈ R
R∗×N , the problem in (34) can be reformu-

lated as

min
P≥0,Q≥0

‖P‖∗ + λ3‖Q‖1, s.t X−P = 0

Q−E = 0,Y −AX−BE = 0. (35)

Thus, the augmented Lagrangian function w.r.t. X, E, P, and
Q can be formed as

Lμ3
(X,E,P,Q)

= ‖P‖∗ + λ3‖Q‖1
+ tr

[
TT

1 (Y −AX−BE)
]
+ tr

[
TT

2 (X−P)
]

+ tr
[
TT

3 (E−Q)
]

+
μ3

2
(‖Y −AX−BE‖2F + ‖P−X‖2F + ‖Q−E‖2F )

(36)

where μ3 > 0 is a penalty parameter; T1 ∈ R
L×N , T2 ∈

R
R×N , and T3 ∈ R

R∗×N are the matrices of Lagrangian mul-
tipliers. To simplify the equations, we let Λ1 = T1/μ3, Λ2 =
T2/μ3, and Λ3 = T3/μ3. Following the same optimization
scheme in the previous sections, the modified nonnegative
IALM optimization algorithm for our problem is summarized
in Algorithm 3.

Algorithm 3 Nonnegative Constraint IALM for Low-Rank
Representation Recovery

Input: The observation matrix Y, the linear dictionary A, the
bilinear dictionary B, the scalar ρ = 1.1, and the balancing
parameter λ3;

Output: The estimated abundance X̂ and bilinear representa-
tion matrix Ê;

1: Initialize: X0,P0, E0, Q0, Λ0
1,Λ

0
2,Λ

0
3, μ3, μmax = 106,

k = 0;
2: while not converged do
3: Fix X, Q, E and update P by:

Pk+1 = argmin
P≥0

Lμ3
(Xk,Ek,P,Qk)

= argmin
P≥0

‖P‖∗ +
μ3

2

∥∥P−
(
Xk +Λk

2

)∥∥2
F

= max
[
D1/μ3

(
Xk +Λk

2

)
, 0
]

4: Fix P, Q, E and update X by:

Xk+1 = argmin
J

Lμ3
(X,Ek,Pk+1,Qk)

= (I+ATA)−1
[
AT (Y −BEk) +Pk+1

+ ATΛk
1 −Λk

2

]
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5: Fix X, P, E and update Q by:

Qk+1 = argmin
Q≥0

Lμ3
(Xk+1,Ek,Pk+1,Q)

= argmin
Q≥0

λ3‖Q‖1 +
μ3

2

∥∥Q−
(
Ek +Λk

3

)∥∥2
F

= max
[
Sλ3/μ3

(
Ek +Λk

3

)
, 0
]

6: Fix X, P, Q and update E by:

Ek+1 = argmin
E

Lμ3
(Xk+1,E,Pk+1,Qk+1)

= (I+BTB)−1
[
BT (Y −AXk+1) +Qk+1

+ BTΛk
1 −Λk

3

]
7: Update Lagrange multiplier Λ1, Λ2, Λ3:

Λk+1
1 =Λk

1 +Y −AXk+1 −BEk+1

Λk+1
2 =Λk

2 +Xk+1 −Pk+1

Λk+1
3 =Λk

3 +Ek+1 −Qk+1

8: Update penalty parameter: μ3 = min(μmax, ρμ3)
9: Update k : k = k + 1.
10: end while
11: return X̂ = Xk, Ê = Ek.

In the IALM algorithm, both Steps 4 and 6 are the ridge
regression problems. Although Steps 3 and 5 are nonlinear con-
vex optimization problems, fortunately, they both have closed-
form solutions. Step 3 can be solved by the singular value
thresholding operator Dκ(·) [55] in the following lemma, and
Step 5 can be solved by the soft-shrinkage thresholding operator
Sλ3/μ3

(·) in [48].
Lemma 3: Consider the following optimization problem:

Θ∗ = argmin
Θ

κ3‖Θ‖∗ +
1

2
‖Θ−C‖2F (37)

where the notation in (37) is the same with Lemma 2. If the
rank of the matrix C is r, the singular value decomposition of
C is

C = UΣVT ,Σ = diag ({πi}1≤i≤r) (38)

where U ∈ R
m×r and V ∈ R

n×r are matrices with orthogonal
columns and the singular values πi(1 ≤ i ≤ r) are positive.
For each parameter κ3 ≥ 0, we define the singular thresholding
operator Dκ3

(·) as

Dκ3
(C) :=UDκ3

(Σ)VT

Dκ3
(Σ) := diag

(
{(πi − κ3)+}1≤i≤r

)
(39)

where (πi − κ3)+ = max(πi − κ3, 0). Then, the optimal solu-
tion of Θ∗ for (37) is

Θ∗ = Dκ3
(C).

Remark 3: Convergence analysis: For IALM, which is a
variation of exact augmented Lagrangian method (ALM), its
convergence has already been well studied when the number of
blocks (i.e., unknown matrix variables) is, at most, two [57].
However, up to now, it is still difficult to generally ensure the
convergence of IALM with three or more blocks. Similar to the
case in [40], because there are four blocks X, E, P, and Q in
Algorithm 3 and the objective function of (34) is nonsmooth,
it is difficult to prove the convergence of our proposed algo-
rithm theoretically. In [40], the authors have introduced some
conditions, which guarantees the convergence of the algorithm
to some extent. Moreover, as illustrated in [57], the IALM is
known to generally perform well in reality. In practice, if the
dictionary size and the parameters are appropriately chosen, we
observe that the proposed IALM algorithm convergences when
the preset maximum iteration is reached.

VI. EXPERIMENTS

In this section, first, we summarize several objective criteria
for evaluating the performance of different abundance estima-
tion algorithms for HSI. Second, the experiment environment
and the parameter settings for all the involved algorithms are
described. Third, we demonstrate that the proposed algorithms
with ASC show better performance than without ASC. Fourth,
we demonstrate the proposed SMV-ADMM method on various
synthetic data sets. Fifth, we validate that our LRR model
makes better estimation of the abundances for synthetic bilinear
mixed images. Finally, our proposed methods are demonstrated
on a real hyperspectral image.

A. Metrics for Performance Evaluation

The quality of the abundance estimation strategy for syn-
thetic images can be measured by comparing the estimated and
actual abundances using the root-mean-square error (RMSE)

RMSE =

√√√√ 1

nR

n∑
i=1

‖xi − x̂i‖2 (40)

where xi and x̂i are the actual and estimated abundance vectors
of the ith pixel of the image and n is the number of pixels.
Moreover, the signal-to-reconstruction error (SRE) introduced
in [29], which provides a better measurement on the relation-
ship between the power of error and signal, is defined as

SRE = 10 log10

⎛
⎝ E

[
‖X‖22

]
E
[
‖X− X̂‖22

]
⎞
⎠ . (41)

In the case of real hyperspectral images, as reported in [1]
and [23], the reconstruction error (RE) and the spectral angle
mapper (SAM) are often used to roughly estimate the quality of
an abundance estimation algorithm. RE is defined as

RE =

√√√√ 1

nL

n∑
i=1

‖yi − ŷi‖22 (42)
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TABLE I
PARAMETER SETTING FOR ALL ALGORITHMS IN THE EXPERIMENTS

where L is the number of spectral bands and yi and ŷi are the
measured and estimated spectra for the ith pixel. Additionally,
SAM is an alternative measure to estimate the performance

SAM =
1

n

n∑
i=1

θ[yi, ŷi] (43)

where

θ[yi, ŷi] = arccos

(
〈yi, ŷi〉

‖yi‖2‖ŷi‖2

)
(44)

and arccos(·) is the inverse cosine operator.
However, as it was pointed out in [27], without ground-truth

information on the abundances for the real HSI data, that the
reconstruction quality measured by RE or SAM is not neces-
sarily proportional to the quality of the abundance estimation.
Therefore, the estimation performance cannot merely be judged
by the results of RE and SAM.

B. Experiment Parameter Setting

All the following simulations are executed on a com-
puter with a 3.4-GHz Intel quad-core i7 processor and 8-GB
1600-MHz RAM. We compare the proposed algorithm with
four other abundance estimation algorithms: the fully constraint
least squares (FCLS) [16] and the algorithm of nonnegative
constraint sparse unmixing by variable splitting and augmented
Lagrangian (CSUnSAL+) [46], which are dedicated to LMM,
and the gradient descent algorithms (GDAs) in [23] and [25]
and the kernel-based hyperspectral unmixing algorithm (named
SK-Hype) [27], which are designed for nonlinear models. The
parameter settings for all the algorithms are shown in Table I.
In particular, we have adopted the algorithm in [46] to solve
the FCLS. Iter denotes the maximum iteration, and tol is the
stopping tolerance. λf and λk are the regularization parameters
for FCLS and SK-Hype, respectively. The kernel used for
SK-Hype is a second-order polynomial kernel. μ0

f , μ0
1, μ0

2,
and μ0

3 are the initializations for the Lagrangian multipliers
in the corresponding algorithms. Because the algorithms are
not very sensitive to the selection of the regularization param-
eters, these parameters are set to the same values for all the
experiments.

C. Comparisons of the Proposed Algorithms With and
Without ASC

In the first experiment, we show that the proposed SMV-
ADMM, MMV-ADMM, and LRR algorithms show signifi-

cantly better performance with ASC than without ASC. First,
we randomly select 12 endmembers from a selected USGS
library2 to build up the dictionary A and the composite dic-
tionary M according to MGBM. Then, we generate 100 mixed
pixels based on MGBM. In each pixel, three endmembers in A
are randomly selected to generate the mixture and corrupted by
the Gaussian noise with SNR = 40 dB, where the abundance
vectors are generated according to the Dirichlet distribution
following the ASC and ANC. We set the bilinear coefficients
as ζlij = γl

ijx
l
ix

l
j(1 ≤ i ≤ j ≤ R) for some γij uniformly dis-

tributed in [0, 1]. We compare the proposed nonnegative SMV-
ADMM, MMV-ADMM, and LRR on the synthetic data with
and without ASC by varying the parameters δ1, δ2, and δ3
from 1× 10−3 to 10. For the MMV-ADMM and LRR, we test
the algorithms on every 10 pixels and then calculate the mean
values of SRE and RMSE. The comparison results are shown
in Fig. 3.

From the results in Fig. 3, we can see that the abundance
estimation performances are further enhanced by enforcing
the ASC. Moreover, it should be noticed that the parameter
δi(1 ≤ i ≤ 3) should be chosen appropriately. If δi is too small,
it will weaken the strength of ASC; if it is too large, it might
overwhelm the data fidelity term and cause the performance to
decrease. Empirically, δi is chosen in the range [0.1, 1], and
more theoretical analysis is left for our future work.

D. Experiment I (Single-Pixel Abundance Estimation on
Synthetic Data)

In this section, in the first experiment, we compare the pro-
posed SMV-ADMM method with state-of-the-art algorithms
based a selected USGS library. In the second experiment, we
show that the proposed method is robust to endmember spectral
variability based on the labeled Pavia University data set.

1) Comparison With State-of-the-Art Method: The perfor-
mance of the proposed SMV-ADMM algorithm is evaluated
on four synthetic images generated by the LMM and three
different bilinear models. Each image contains 500 pixels. First,
R pure endmembers are randomly extracted from a selected
USGS library W ∈ R

224×498 to construct the dictionary A ∈
R

224×R(R 
 498). The reflectance values are measured for
224 spectral bands distributed uniformly in the interval 0.4−
2.5 μm. We choose R = 12 and 24 endmembers to generate
two different dictionaries, respectively (see Fig. 4). When R =
12, the matrix defined in (17) is M ∈ R

224×90; when R =
24, M ∈ R

224×324. Thus, we can test the performance of our

2http://www.lx.it.pt/bioucas/code/sunsaldemo.zip
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Fig. 3. Comparison of SRE and RMSE for the proposed SMV-ADMM, MMV-ADMM, and LRR algorithms with and without the ASC.

Fig. 4. Two dictionaries of sizes (a) R = 12 and (b) R = 24 from the selected USGS library.

proposed algorithm for both over- and underdetermined cases.
Each pixel is a mixture of r endmembers from the dictionary
A, where r is an integer uniformly distributed in {1, . . . , 6}.
The size of the dictionary and the number of mixtures are
chosen to mimic the real-life scenarios. In practice, the target
hyperspectral image usually contains 10 to 15 different pure
endmembers, but there might be only a few pure endmembers
present in each pixel individually.

To generate the synthetic image, the abundance vectors
xl(l = 1, 2, . . . , 2500) are randomly generated according to
the Dirichlet distribution following the ASC and ANC. For
the lth pixel, the parameters ζlij in MGBM are set as ζlij =

γl
ijx

l
ix

l
j(1 ≤ i ≤ j ≤ R), where xl

i and xl
j are the abundances

for the ith and jth endmembers and the variable γl
ij is randomly

generated according to the uniform distribution over [0.5, 1].
The parameter b in PPNMM is uniformly distributed between
[0, 0.5]. We corrupt each pixel by a white Gaussian noise
with SNR = 40 dB (SNR := ‖Ax‖22/‖n‖22). As in the real
world, hyperspectral images are corrupted by band-correlated
noise, and we also demonstrate the proposed method on pixels
corrupted by colored noise with SNR = 40 dB for dictionary
size R = 12. We use a first-order autoregressive filter v(t) =
0.9v(t) + n(t− 1) to generate a bandwise correlated noise,
where n(t) is a sequence of independent white Gaussian noise.
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TABLE II
COMPARISON OF FIVE ABUNDANCE ESTIMATION ALGORITHMS ON LMM AND THREE DIFFERENT

BILINEAR MODELS WITH DICTIONARY SIZE R = 12 AND WHITE GAUSSIAN NOISE

TABLE III
COMPARISON OF FIVE ABUNDANCE ESTIMATION ALGORITHMS ON LMM AND THREE DIFFERENT

BILINEAR MODELS WITH DICTIONARY SIZE R = 12 AND COLORED NOISE

The proposed algorithm is compared with FCLS,
CSUnSAL +, GDA, and SK-Hype. It should be noticed that the
GDA in [23] and [25] depends on the exact model assumption.
As such, we need to manually modify the algorithms to fit
different model assumptions for FM, PPNMM, and MGBM.

From the result in Tables II–IV, we can see the following.

1) For various BMMs, the proposed nonnegative
SMV-ADMM algorithm shows significantly improved
performance compared with state-of-the-art algorithms
no matter whether the system is overdetermined
M ∈ R

224×90 or underdetermined M ∈ R
224×324.

2) Comparing the results in Tables II and III, the proposed
SMV-ADMM shows similar performance for pixels cor-
rupted by white Gaussian noise and colored noise.

3) For the synthetic data generated by LMM, our method
shows worse results compared with FCLS based on all
the criteria, but for the data generated by BMMs, our
method outperforms FCLS. Therefore, we can see that
the introduced bilinear dictionary of our method is neither
“overfitting” the data nor modeling the sensor noise.

We conclude that the introduced bilinear dictionary in our
proposed SMV-ADMM algorithm is very effective for detect-
ing and getting rid of the bilinear components in BMMs.

2) Experiment II (Endmember Spectral Variability Versus
Nonlinear Mixture): In this experiment, we show that the
proposed bilinear abundance estimation method is robust to
endmember spectral variability [56] and is not intended for
“overfitting” or “memorizing” the data. To demonstrate this, we
use the well-labeled Pavia University data set,3 which contains
nine manually labeled materials, including shadow. Each mate-
rial has many labeled pixels in the data set, and the pixels that
are labeled as the same material have small spectral variabilities
at different spatial locations due to the varying condition of
scene components and differential illumination [56].

First, we choose six different materials (see Fig. 5) to gen-
erate the linear and bilinear dictionaries. For each material,
a pure endmember is estimated by the mean value of all the

3http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes

Authorized licensed use limited to: New York University. Downloaded on August 26,2020 at 06:01:31 UTC from IEEE Xplore.  Restrictions apply. 



QU et al.: ABUNDANCE ESTIMATION FOR BMMs VIA JOINT SPARSE AND LOW-RANK REPRESENTATION 4417

TABLE IV
COMPARISON OF FIVE ABUNDANCE ESTIMATION ALGORITHMS ON LMM AND THREE DIFFERENT

BILINEAR MODELS WITH DICTIONARY SIZE R = 24 AND WHITE GAUSSIAN NOISE

Fig. 5. Mean spectral value for the six different labeled materials in Pavia
University hyperspectral image. The endmembers with bold solid line are
chosen for generating the mixture in the experiment.

pixels labeled as the same material, and the bilinear endmem-
ber is generated by the Hadamard product of two mean pure
endmembers. Second, 20 mixed pixels are generated based on
both the LMM and MGBM. For both cases, the abundances are
set the same, randomly generated using Dirichlet distribution.
The bilinear abundance for MGBM is generated in the same
way as in Experiment I. To account for the spectral variability,
every synthetic pixel is a mixture of two pure pixels where each
one is a randomly selected pixel from the pool of pixels that
are labeled as the same material. The synthetic pixels are also
corrupted by a Gaussian white noise of SNR = 40 dB. We use
the proposed SMV-ADMM to estimate the abundances for the
mixed pixels with spectral variability for both the LMM and
MGBM.

The estimated linear and bilinear abundances along with the
ground truth are shown in Fig. 6. From the results, we can
see that the estimated bilinear abundances by the proposed
SMV-ADMM method for the LMM case are nearly zero,

while for the MGBM case, our method can still approximately
predict the positions and values for the bilinear abundances
even with the occurrence of endmember spectral variability for
each mixed pixel. Therefore, we conclude that the proposed
approach is robust to spectral variability and is able to accu-
rately distinguish between bilinearly mixed data and pixels that
are linear mixtures of endmembers with shadow and spectral
variabilities.

E. Abundance Estimation by Jointly Sparse and LRR Method
on Synthetic Data

In this section, we use two experiments, demonstrating the
following: 1) The proposed bilinear dictionary can effectively
deal with the bilinear term in the BMM; 2) the joint-sparse
regression fails when pixels consist of different materials; 3) by
using the spatial information, the joint sparsity and LRR model
can improve the performance of the abundance estimation; and
4) the LRR model can better capture the HSI data structure than
the joint-sparsity model.

1) Experiment I (Effectiveness of the Bilinear Dictionary):
In the first experiment of this section, we use a toy example
to demonstrate the effectiveness of the bilinear dictionary and
the deficiency of the joint-sparsity model. We randomly select
12 pure endmembers from the USGS library [see Fig. 7(a)]
and use four of them to generate our mixed pixels. Under the
assumption that the materials are homogeneous (all pixels have
the same endmembers), 10 pixels are generated by MGBM in
the same way as in the previous section. The first 5 pixels are
mixed by the 1–4th endmembers, and the rest are mixed by
the 5–8th endmembers. The data are corrupted by the white
Gaussian noise with SNR = 40 dB. The estimated linear and
bilinear abundances are depicted in Fig. 2, where each column
denotes one pixel in each subimage and each row indicates one
pure endmember in the dictionary. From the results in Fig. 2
and Table V, we can see the following.

1) The proposed methods can well approximate the bilinear
term generated by MGBM.
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Fig. 6. Comparisons of the ground truth with the estimated abundance matrix X and the bilinear coefficient matrix E by SMV-ADMM in Experiment II. The
first row shows the abundance matrices, and the second row shows the bilinear coefficient matrices. From the left column to the right are the ground truth for
LMM, estimation for LMM, ground truth for MGBM, and estimation for MGBM.

Fig. 7. Two endmember libraries of size R = 12 for Experiments I and II in Section VI-D, respectively. The endmembers with bold solid line are chosen for
generating the mixture in the experiment.

TABLE V
COMPARISON OF UNMIXING RESULTS FOR FIG. 2

2) The joint-sparse regression fails when pixels within a
neighborhood contain different sets of endmembers, and
the LRR method has the best performance since it does
not enforce a strict row-sparsity constraint.

2) Experiment II (Effectiveness of the LRR): In this exper-
iment, we demonstrate the effectiveness of the joint-sparsity
model and LRR method on a synthetic hyperspectral image.
Again, we randomly select 12 pure endmembers from the
USGS library to construct the endmember dictionary [see
Fig. 7(b)] and the corresponding second-order bilinear dictio-
nary. Five endmembers are then randomly selected from the
endmember dictionary to generate a 150 × 150 image by
MGBM as illustrated in Fig. 8(a). Each background pixel is
generated by a bilinear mixture of five endmembers with the
same abundance and bilinear coefficients. We generate a total
number of 25 blocks of size 20 × 20 arrayed in five rows,
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Fig. 8. Original and the reconstructed synthetic false-color hyperspectral
images of the 1th, 112th, and 224th bands. (a) Synthetic image of size 150 ×
150 generated according to MGBM by a small dictionary of 12 pure
endmembers extracted from the USGS library. In this image, the back-
ground is generated by a mixture of five pure endmembers randomly
selected from the dictionary, each 20 × 20 block is randomly mixed
by 1–5 endmembers in the background, and every pixel is corrupted by
Gaussian white noise with SNR = 40 dB. (b) Reconstructed image from SMV-
ADMM algorithm. (c) Reconstructed image from MMV-ADMM algorithm.
(d) Reconstructed image from our LRR method.

TABLE VI
COMPARISON OF UNMIXING RESULTS FOR FIG. 8

where the blocks in each row have the same number (varying
from one to five) of endmembers randomly selected from the
five endmembers but mixed with different abundances. In each
row, there are five blocks positioned in parallel, and within each
block, the pixels are generated according to MGBM with the
same abundances. Throughout the entire HSI image, each pixel
is corrupted by the white Gaussian noise with SNR = 40 dB.

As in our previous experiments, we have already demon-
strated the effectiveness of the proposed SMV-ADMM
algorithm for the BMMs. Therefore, in this experiment, we only
compare our proposed SMV-ADMM, MMV-ADMM, and LRR
algorithms. The reconstructed images and the estimated abun-
dances for the proposed algorithms are shown in Figs. 8 and 9,
respectively. The results of the abundance estimation error are
demonstrated in Table VI. From the results, we conclude the
following.

1) By taking advantage of the spatial information, the joint-
sparsity model can reduce the estimation error to some
extent. However, it causes some aliasing artifacts for the
pixels on the boundaries between different materials.

2) The LRR method further reduces the estimation error
significantly. Unlike the joint-sparsity model, it does not
cause severe aliasing artifacts.

F. Real Data

In this section, we evaluate the performance of the proposed
method when executed on a real hyperspectral image. The
data under consideration are the well-known Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) Cuprite image (refer
to [58] for a detailed description) over the Cuprite mining
region in NV, USA, which is available online in reflectance
units.4 The portion that we use in this experiment is the image
of the sector labeled as “f970619t01p02_r02_sc02.a.rfl” of size
512 × 614 in the data set [see Fig. 10(a)]. The scene comprises
224 spectral bands between 0.4 and 2.5 μm, with a nominal
spectral resolution of 10 nm. Prior to the analysis, bands 1–2,
105–115, 150–170, and 223–224 are removed due to water
absorption and low SNR in those bands, leaving a total of 188
spectral bands available [29].

Before performing abundance estimation, our first step is to
determine the pure endmembers. This can be accomplished by
the VCA algorithm. By assuming the existence of pure pixels
in the Cuprite image and based on the geometry of convex sets,
the VCA algorithm exploits the fact that endmembers occupy
the vertices of a simplex. It iteratively projects data onto a di-
rection orthogonal to the subspace spanned by the endmembers
already determined and selects a new endmember signature that
corresponds to the extreme of the projections. The VCA can
efficiently extract endmembers with high accuracy.

However, it should be noticed that the VCA algorithm relies
on the assumption that the pixels in the data are linearly mixed.
However, in our case, we are dealing with nonlinear mixtures,
and as explained in [23] and [25], we can still apply it to extract
endmembers for bilinear models where only small nonlineari-
ties occur in the data. On the other hand, because VCA is an
unsupervised algorithm, we need to decide the number of pure
endmembers to extract, which is not a trivial task. A too small
number will not yield good estimation results since the retrieved
endmembers themselves will be mixtures of several actual
pure materials. A too large number of endmembers will result
in many unidentifiable endmembers, mostly corresponding to
spectral noise, and multiple endmembers corresponding to the
same pure material. In our experiment, we empirically extract
12 pure endmembers by the VCA algorithm, where Fig. 10(b)
shows the extracted pure endmembers for one experiment.

After the pure endmembers are extracted, we construct
the pure endmember dictionary and the associated bilinear
dictionary. Then,the abundance estimation is conducted on a
subimage of size 200 × 200 from the original 512 × 614
data [the region within the yellow rectangle in Fig. 10(a)].
We compare our proposed SMV-ADMM, MMV-ADMM,
and LRR algorithms with FCLS, CSUnSAL+, GDA, and
SK-Hype with different model assumptions. Additionally, we
perform our SMV-ADMM, MMV-ADMM, and LRR on the
proposed MGBM compared with GBM, which is accomplished
by a smaller bilinear dictionary excluding the self-reflection
components ai � ai(1 ≤ i ≤ R) in (16).

Because VCA is initialization dependent, we run the experi-
ment 15 times to show the stability of the proposed algorithms.

4http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 9. Comparison of abundance estimation result on a synthetic image. The first row shows the abundance of five different endmembers in the original image,
and the remaining rows show the estimated abundance results for the proposed SMV-ADMM, MMV-ADMM, and LRR algorithms, respectively. Each column
shows the original and the estimated image of abundances for one mixed pure endmember.

Fig. 10. Real data used in the final experiment. (a) False-color image of the AVIRIS Cuprite data set in the file “f970619t01p02_r02_sc02.a.rfl.” The bands used
as RGB channels are bands (12, 22, 42) of the original 224-band image. (b) Twelve pure endmembers extracted by VCA for one experiment are displayed. The
endmembers with bold line are the selected ones, with their abundances shown in Fig. 11.

The results of RE, SAM, and their associated means and
variances are shown in Table VII, where μRE and σRE are
the mean and variance for RE and μSAM and σSAM are the
mean and variance for SAM. Obviously, the proposed algo-
rithms based on MGBM show much lower reconstructed errors
compared with other approaches. However, it should be noticed
that the RE and SAM here are only reported as complementary
information as explained in Section VI-A.

The estimated abundances for one of the 15 experiments
are reported in Fig. 11, where the proposed SMV-ADMM,
MMV-ADMM, and LRR are based on MGBM. We can see
that all the algorithms generate abundance maps with similar
patterns, but our proposed algorithms produce seemingly more
meaningful abundances. Specifically, for Endmember 1, the
abundance maps generated by our algorithms are sharper and
clearer; for Endmember 12, the proposed methods could find
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TABLE VII
COMPARISON OF THE RECONSTRUCTION ERROR FOR ALL ALGORITHMS ON THE REAL HYPERSPECTRAL IMAGE WITH ABUNDANCE SHOWN IN FIG. 11

Fig. 11. Real abundance estimated by seven different algorithms for five different extracted endmembers.

the materials in the up-left corner that the other algorithms
cannot. Without ground truth for the real data, more convincing
validations are needed and remain for the future work. In any

cases, various experiments on synthetic data in the previous
sections have already demonstrated the effectiveness of our
methods.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an SMV-ADMM algorithm
for hyperspectral abundance estimation problem based on the
BMMs, which transforms the bilinear problem into a linear
problem. The MMV-ADMM and LRR algorithms are further
proposed to exploit the spatial structure of the abundance
vectors. Extensive simulation results demonstrate that our pro-
posed methods significantly outperform state-of-the-art algo-
rithms. However, the proposed methods still have limitations
and drawbacks.

First, the proposed methods are dedicated to BMMs and
cannot be generalized if the underling mixture mechanism is
complex and does not satisfy the BMM models. Furthermore,
as the size of the linear dictionary is increased, the size of
the bilinear dictionary will increase dramatically, which will
make the proposed algorithms impractical for large dictionaries
like the case in [29]. Second, as shown in Section VI-C, the
proposed methods are sensitive to the value of the ASC regular-
ization parameter δ. Some theoretical analysis for choosing this
parameter needs to be addressed. On the other hand, solving the
LRR is currently computationally expensive. Therefore, a more
efficient optimization algorithm for this problem is required
(i.e., the linearized augmented Lagrangian method [59]).
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