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Structured Priors for Sparse-Representation-Based
Hyperspectral Image Classification
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Abstract—Pixelwise classification, where each pixel is assigned
to a predefined class, is one of the most important procedures
in hyperspectral image (HSI) analysis. By representing a test
pixel as a linear combination of a small subset of labeled pixels,
a sparse representation classifier (SRC) gives rather plausible
results compared with that of traditional classifiers such as the
support vector machine. Recently, by incorporating additional
structured sparsity priors, the second-generation SRCs have ap-
peared in the literature and are reported to further improve the
performance of HSI. These priors are based on exploiting the
spatial dependences between the neighboring pixels, the inherent
structure of the dictionary, or both. In this letter, we review and
compare several structured priors for sparse-representation-based
HSI classification. We also propose a new structured prior called
the low-rank (LR) group prior, which can be considered as a
modification of the LR prior. Furthermore, we will investigate
how different structured priors improve the result for the HSI
classification.

Index Terms—Classification, hyperspectral image (HSI), sparse
representation, structured priors.

I. INTRODUCTION

ONE of the most important procedures in hyperspectral
image (HSI) is image classification, where the pixels are

labeled to one of the classes based on their spectral characteris-
tics. Due to the numerous demands in mineralogy, agriculture,
and surveillance, the HSI classification task is developing very
rapidly, and a large number of techniques have been proposed
to tackle this problem [1]. Compared with previous approaches,
support vector machine (SVM) is found highly effective on
both computational efficiency and classification results. A wide
variety of SVM’s modifications have been proposed to improve
its performance. Some of them incorporate the contextual infor-
mation in the classifiers [2], [3]. Others design sparse SVM in
order to pursue a sparse decision rule by using �1-norm as the
regularizer [4].

Recently, sparse representation classifier (SRC) has been
proposed to solve many computer vision tasks [5], [6], where
the use of sparsity as a prior often leads to state-of-the-art
performance. SRC has also been applied to HSI classifica-
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tion [7], relying on the observation that hyperspectral pixels
belonging to the same class approximately lie in the same
low-dimensional subspace. In order to alleviate the problem
introduced by the lack of sufficient training data, Haq et al. [8]
proposed the homotopy-based SRC. Another way to solve the
problem of insufficient training data is to employ the contextual
information of neighboring pixels in the classifier, such as
spectral–spatial constraint classification [9].

In SRC, a test sample y ∈ RP , where P is the number of
spectral bands, can be written as a sparse linear combination of
all the training pixels (atoms in a dictionary) as

x̂ = min
x

1

2
‖y −Ax‖22 + λ‖x‖1 (1)

where x ∈ RN and ‖x‖1 =
∑N

i=1 |xi| is �1-norm. A =
[a1,a2, . . . ,aN ] is a structured dictionary formed from con-
catenation of several classwise subdictionaries, {ai}i=1,...,N

represents the columns of A, N is the total number of training
samples from all the K classes, and λ is a scalar regularization
parameter.

The class label for the test pixel y is determined by the
minimum residual between y and its approximation from each
classwise subdictionary

class(y) = argmin
g

‖y −Aδg(x)‖22 (2)

where g ⊂ {1, 2, . . . ,K} is the group or class index and δg(x)
is the indicator operation zeroing out all elements of x that do
not belong to the class g.

In the case of HSI, SRC always suffers from the nonunique-
ness or instability of the sparse coefficients due to the high
mutual coherency of the dictionary [10]. Fortunately, a better
reconstructed signal and a more robust representation can be
obtained by either exploring the dependences of neighboring
pixels or exploiting the inherent dictionary structure. Recently,
structured priors have been incorporated into HSI classification
[7], which can be sorted into three categories: 1) priors that only
exploit the correlations and dependences among the neighbor-
ing spectral pixels or their sparse coefficient vectors, which in-
clude joint sparsity (JS) [12], graph regularized Lasso (referred
to as the Laplacian regularized Lasso) [13], and the low-rank
(LR) Lasso [14]; 2) priors that only exploit the inherent struc-
ture of the dictionary, such as group Lasso [15]; and 3) priors
that enforce structural information on both sparse coefficients
and dictionary, such as collaborative group Lasso [16] and
collaborative hierarchical Lasso (CHiLasso) [17]. Aside from
SRC, structured sparsity prior can also be incorporated into
other classifiers such as the logistic regression classifiers [18].

The main contributions of this letter are as follows: 1) to
assess the SRC performance using various structured sparsity
priors for HSI classification and 2) to propose a conceptually

1545-598X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: New York University. Downloaded on August 26,2020 at 06:04:50 UTC from IEEE Xplore.  Restrictions apply. 



1236 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 7, JULY 2014

similar prior to CHiLasso, which is called the LR group (LRG)
prior. This prior is based on the assumption that pure or mixed
pixels from the same classes are highly correlated and can be
represented by a combination of sparse LRGs (classes). The
proposed prior takes advantage of both the group sparsity (GS)
prior, which enforces sparsity across the groups, and the LR
prior, which encourages sparsity within the groups, by only
using one regularizer.

In the following sections, we investigate the roles of different
structured priors imposed on the SRC optimization algorithm.
Starting with the classical sparsity �1-norm prior, we then
introduce several different priors with experimental results. The
structured priors discussed are JS, Laplacian sparsity (LS), GS,
sparse GS (SGS), LR, and LRG priors.

II. HSI CLASSIFICATION VIA DIFFERENT

STRUCTURED SPARSE PRIORS

A. JS Prior

In HSI, pixels within a small neighborhood usually consist of
similar materials. Thus, their spectral characteristics are highly
correlated. The spatial correlation between neighboring pixels
can be indirectly incorporated through a JS model (JSM) [11]
by assuming that the underlying sparse vectors associated with
these pixels share a common sparsity support. Consider pixels
in a small neighborhood of T pixels. Let Y ∈ RP×T represent
a matrix whose columns correspond to pixels in a spatial
neighborhood in an HSI. Columns of Y = [y1,y2, . . . ,yT ]
can be represented as a linear combination of dictionary atoms
Y = AX, where X = [x1,x2, . . . ,xT ] ∈ RN×T represents a
sparse matrix. In JSM, the sparse vectors of T neighboring
pixels, which are represented by the T columns of X, share the
same support. Therefore, X is a sparse matrix with only few
nonzero rows. The row-sparse matrix X can be recovered by
solving the following Lasso problem:

min
X

1

2
‖Y −AX‖2F + λ‖X‖1,2 (3)

where ‖X‖1,2 =
∑N

i=1 ‖xi‖2 is an �1,2-norm and xi represents
the ith row of X.

The label for the center pixel yc is then determined by the
minimum total residual error

class(yc) = argmin
g

‖Y −Aδg(X)‖2F (4)

where δg(X) is the indicator operation zeroing out all the
elements of X that do not belong to the class g.

B. LS Prior

In sparse representation, due to the high coherency of the
dictionary atoms, the recovered sparse coefficient vectors for
multiple neighboring pixels could be partially different even
when the neighboring pixels are highly correlated, and this may
lead to misclassification. As mentioned in the previous section,
JS is able to solve such a problem by enforcing multiple pixels
to select exactly the same atoms. However, in many cases, when
the neighboring pixels fall on the boundary between several
homogeneous regions, the neighboring pixels will belong to
several distinct classes (groups) and should use different sets
of subdictionary atoms. LS enhances the differences between

sparse coefficient vectors of the neighboring pixels that belong
to different clusters. We introduce the weighting matrix W,
where wij characterizes the similarity between a pair of pixels
yi and yj within a neighborhood. Optimization with an addi-
tional LS prior can be expressed as

min
X

1

2
‖Y −AX‖2F + λ1‖X‖1 + λ2

∑

i,j

wij‖xi − xj‖22 (5)

where λ1 and λ2 are the regularization parameters. The matrix
W is used to characterize the similarity among neighboring
pixels in the spectra space. Similar pixels will possess larger
weights, therefore enforcing the differences between the cor-
responding sparse coefficient vectors to become smaller and
similarly allowing the difference between sparse coefficient
vectors of dissimilar pixels to become larger. Therefore, the LS
prior is more flexible than the JS prior in that it does not always
force all the neighboring pixels to have the same common
support. In this letter, the weighting matrix is computed using
the sparse subspace clustering method in [19]. Note that this
grouping constraint is enforced on the testing pixels instead
of the dictionary atoms, which is different from GS. Let L =

I−D−1/2WD−1/2 be the normalized symmetric Laplacian
matrix [19], where D is the degree matrix computed from W.
We can rewrite (5) as

min
X

1

2
‖Y −AX‖2F + λ1‖X‖1 + λ2tr(XLXT ). (6)

The above equation can be solved by a modified feature-sign
search algorithm [13].

C. GS Prior

The SRC dictionary has an inherent group-structured prop-
erty since it is composed of several class subdictionaries, i.e.,
the atoms belonging to the same class are grouped together
to form a subdictionary. In sparse representation, we classify
pixels by measuring how well the pixels are represented by each
subdictionary. Therefore, it would be reasonable to enforce
the pixels to be represented by groups of atoms instead of
individual ones. This could be accomplished by encouraging
coefficients of only certain groups to be active and the remain-
ing groups inactive. Group Lasso [15], for example, uses a
sparsity prior that sums up the Euclidean norm of every group
coefficients. It will dominate the classification performance
particularly when the input pixels are inherently mixed pixels.
Group Lasso optimization can be represented as

min
x

1

2
‖y −Ax‖22 + λ

∑

g∈G
wg‖xg‖2 (7)

where g ⊂ {G1, G2, . . . , GK},
∑

g∈G ‖xg‖2 represents the
group sparse prior defined in terms of K groups, and wg is the
weight and is usually set to the square root of the cardinality
of the corresponding group to compensate for the different
group sizes. Here, xg refers to the coefficients of each group.
The aforementioned GS can be easily extended to the case
of multiple neighboring pixels by extending problem (7) to
collaborative group Lasso, which is formulated as

min
X

1

2
‖Y −AX‖2F + λ

∑

g∈G
wg‖Xg‖2 (8)
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where
∑

g∈G ‖Xg‖2 represents a collaborative group Lasso
regularizer defined in terms of group and Xg refers to each of
the group coefficient matrix. When the group size is reduced to
one, the group Lasso degenerates into a JS Lasso.

D. SGS Prior

In the formulations (7) and (8), the coefficients within each
group are not sparse, and all the atoms in the selected groups
could be active. If the subdictionary is overcomplete, then it
is necessary to enforce sparsity within each group. To achieve
sparsity within the groups, an �1-norm regularizer can be added
to the group Lasso (7), which can be written as

min
x

1

2
‖y −Ax‖22 + λ1

∑

g∈G
wg‖xg‖2 + λ2‖x‖1. (9)

Similarly, (9) can be easily extended to the multiple feature
case, which can be written as

min
X

1

2
‖Y −AX‖2F + λ1

∑

g∈G
wg‖Xg‖2 + λ2

∑

g∈G
wg‖Xg‖1.

(10)

Optimization problem (9) is referred to in the literature as the
sparse group Lasso and problem (10) as the CHiLasso [17].

E. LR/GS Prior

Based on the fact that spectra of neighboring pixels are
highly correlated, it is reasonable to enforce the LR sparsity
prior on their coefficient matrix. The LR prior is more flexible
when compared with the JS prior which strictly enforces the
row sparsity. Therefore, when neighboring pixels are composed
of small nonhomogeneous regions, the LR sparsity prior outper-
forms the JS prior. LR sparse recovery problem has been well
studied in [14] and is stated as the following Lasso problem:

min
X

1

2
‖Y −AX‖2F + λ‖X‖∗ (11)

where ‖X‖∗ is the nuclear norm [14].
To incorporate the structure of the dictionary, we now extend

the LR prior to group LR prior, where the regularizer is obtained
by summing up the rank of every group coefficient matrix

min
X

1

2
‖Y −AX‖2F + λ

∑

g∈G
wg‖Xg‖∗. (12)

The LRG prior is able to obtain the within-group sparsity by
minimizing the nuclear norm of each group. Furthermore, the
summation of nuclear norms empowers the proposed prior to
obtain a GS pattern. Hence, the LRG prior is able to achieve
sparsity both within and across groups by using only one
regularization term.

III. RESULTS AND DISCUSSION

A. Data Sets

We evaluate various structured sparsity priors on two differ-
ent HSIs and one toy example. The first HSI to be assessed is
the Indian Pine, acquired by Airborne Visible/Infrared Imaging
Spectrometer, which generates 220 bands, of which 20 noisy
bands are removed before classification. The spatial dimension

TABLE I
NUMBER OF TRAINING AND TEST SAMPLES FOR THE INDIAN PINE IMAGE

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES FOR THE

UNIVERSITY OF PAVIA IMAGE

of this image is 145 × 145, which contains 16 ground-truth
classes, as shown in Table I. We randomly choose 997 pixels
(10.64% of all the labeled pixels) for constructing the dictionary
and use the remaining pixels for testing. The second image
is the University of Pavia, which is an urban image acquired
by the Reflective Optics System Imaging Spectrometer and
contains 610 × 340 pixels. It generates 115 spectral bands,
of which 12 noisy bands are removed. There are nine ground-
truth classes of interests. For this image, we choose 997 pixels
(2.32% of all the labeled pixels) for constructing the dictionary
and the remaining pixels for testing, as shown in Table II. The
toy example consists of two different classes (classes 2 and 14
of the Indian Pine test set), and each class contains 30 pixels.
The dictionary is the same as that for the Indian Pine. The
toy example is used to evaluate the various sparsity patterns
generated by the different structured priors.

B. Models and Methods

The tested structured sparse priors are as follows: 1) JS;
2) LS; 3) collaborative GS; 4) SGS; 5) LR; and 6) LRG,
corresponding to (3), (6), (8), (10), (11), and (12), respectively.
For SRC, the parameters λ, λ1, and λ2 of different structured
priors range from 10−3 to 0.1. Performance on the toy example
will be visually examined by the difference between the desired
sparsity regions and the recovered ones. For the two HSIs,
classification performance is evaluated by the overall accuracy
(OA), average accuracy (AA), and the κ coefficient measure
on the test set. For each structured prior, we present the result
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TABLE III
CLASSIFICATION ACCURACY (IN PERCENT) FOR THE INDIAN PINE IMAGE USING 997 (10.64%) TRAINING SAMPLES

TABLE IV
CLASSIFICATION ACCURACY (IN PERCENT) FOR THE UNIVERSITY OF PAVIA IMAGE USING 997 (2.32%) TRAINING SAMPLES

with the highest OA using cross validation. A linear SVM is
implemented for comparison, whose parameters are set in the
same fashion as in [7].

In experiments, JS, GS, and LR priors are solved by alter-
nating direction method of multipliers (ADMM) [20], while
CHiLasso and Laplacian prior are solved by combining sparse
reconstruction by separable approximation (SpaRSA) [21] and
ADMM. In addition, in conformity with previous work [13], the
Laplacian regularized Lasso is also solved by a modified feature
sign search (FSS) method. In this letter, we try to present a fair
comparison among all priors. According to the optimization
technique, we sort the structured priors into two categories:
1) priors solved by ADMM and SpaRSA and 2) priors solved
by FSS-based method. The first rows of Tables III and IV show
the methods used to implement the sparse recovery for each
structured prior.

C. Results

Sparsity patterns of the toy example are shown in Fig. 1.
The expected sparsity regions are shown in Fig. 1(a), where the
y-axis labels the dictionary atom index and the x-axis labels
the test pixel index. The red and green regions correspond to
the ideal locations of the active atoms for classes 2 and 14, re-
spectively. Nonzero coefficients that belong to other classes are
shown in blue dots. The JS [Fig. 1(c)] shows clear row sparsity
pattern, but many rows are mistakenly activated. As expected,
active atoms in Fig. 1(d), (e), and (g) demonstrate GS patterns.
Comparing the GS [Fig. 1(d)] and SGS Fig. 1(e), it is observed
that most of the atoms are deactivated within groups using SGS.

Fig. 1. Sparsity patterns for the toy example: (a) Desired sparsity regions.
(b) �1 minimization using ADMM. (c) JS. (d) Collaborative GS. (e) Collabora-
tive SGS. (f) LR sparsity. (g) LR GS. (h) LS via FFS.

The LRG prior [Fig. 1(g)] demonstrates a similar sparsity pat-
tern as that of SGS. For the LS [Fig. 1(h)], similarity of sparse
coefficients that belong to the same classes is clearly visible.

Table III and Fig. 2 show the performance of SRCs with
different priors on the Indian Pine image. A spatial window of
9 × 9 (T = 81) is used since this image consists of mostly large
homogeneous regions. Among SRCs with different priors, the
worst result occurs when we use simple �1 ADMM. JS prior
gives better result than the LR prior. This is due to the large
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Fig. 2. Results for the Indian Pine image: (a) Ground truth. (b) Training set. (c) Test set. Classification map obtained by (d) SVM. (e) �1 minimization using
ADMM. (f) JS. (g) Collaborative GS. (h) Collaborative SGS. (i) LR sparsity. (j) LR GS. (k) �1 minimization via FSS. (l) LS via FSS.

TABLE V
COMPUTATION TIME (IN SECONDS) FOR THE INDIAN PINE IMAGE

areas of homogeneous regions in this image, which favors the
JSM. The highest OA is given by the LS prior via FFS, and such
a high performance is partly contributed to the accurate sparse
recovery of the FSS method. Both SGS and LRG outperform
GS. We can see that, among ADMM-based methods, the LRG
prior yields the smoothest result. The computational time of
various structured priors for the Indian Pine image is shown in
Table V. Among ADMM/SpaRSA-based methods, LRG, GS,
and SGS take roughly similar time (∼2500 s) to process the
image, while LR and JS require longer time (∼4000 s). LS via
FFS significantly impedes the computational efficiency.

Results for the University of Pavia image are shown in
Table IV. The window size for this image is 5 × 5 (T = 25)
since many narrow regions are present in this image. The GS
prior gives the highest OA among the priors optimized by
ADMM. The LR sparsity prior gives a much better result than
JS since this image contains many small homogeneous regions.
The LS prior via FFS gives the highest OA performance. How-
ever, the difference between performances of various structured
priors is quite small.

IV. CONCLUSION

This letter has reviewed five different structured sparse priors
and has proposed an LR GS prior. Using these structured priors,
classification results of SRCs on HSI are generally improved
when compared with those of the classical �1 sparsity prior. The
results have confirmed that the LR prior is a more flexible con-
straint compared with the JS prior while the latter works better
on large homogeneous regions. Imposing the group structured
prior on the dictionary always gives higher OA compared with
the �1 prior. We have also observed that the performance not
only is determined by the structured priors but also depends on
the corresponding optimization techniques.
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