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Finding a Sparse Vector in a Subspace: Linear
Sparsity Using Alternating Directions
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Abstract— Is it possible to find the sparsest vector (direction)
in a generic subspace S ⊆ R

p with dim (S) = n < p?
This problem can be considered a homogeneous variant of
the sparse recovery problem and finds connections to sparse
dictionary learning, sparse PCA, and many other problems in
signal processing and machine learning. In this paper, we focus on
a planted sparse model for the subspace: the target sparse vector
is embedded in an otherwise random subspace. Simple convex
heuristics for this planted recovery problem provably break
down when the fraction of nonzero entries in the target sparse
vector substantially exceeds O(1/

√
n). In contrast, we exhibit

a relatively simple nonconvex approach based on alternating
directions, which provably succeeds even when the fraction of
nonzero entries is �(1). To the best of our knowledge, this is
the first practical algorithm to achieve linear scaling under the
planted sparse model. Empirically, our proposed algorithm also
succeeds in more challenging data models, e.g., sparse dictionary
learning.

Index Terms— Sparse vector, subspace modeling, sparse
recovery, homogeneous recovery, dictionary learning, nonconvex
optimization, alternating direction method.

I. INTRODUCTION

SUPPOSE that a linear subspace S embedded in R
p con-

tains a sparse vector x0 �= 0. Given an arbitrary basis of S,
can we efficiently recover x0 (up to scaling)? Equivalently,
provided a matrix A ∈ R

(p−n)×p with Null(A) = S,1 can we
efficiently find a nonzero sparse vector x such that Ax = 0?
In the language of sparse recovery, can we solve

min
x

‖x‖0 s.t. Ax = 0, x �= 0? (I.1)

In contrast to the standard sparse recovery problem (Ax = b,
b �= 0), for which convex relaxations perform nearly optimally
for broad classes of designs A [2], [3], the computational
properties of problem (I.1) are not nearly as well understood.
It has been known for several decades that the basic
formulation

min
x

‖x‖0 , s.t. x ∈ S \ {0}, (I.2)
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1Null(A) .= {

x ∈ R
p | Ax = 0

}
denotes the null space of A.

is NP-hard for an arbitrary subspace [4], [5]. In this paper,
we assume a specific random planted sparse model for the
subspace S: a target sparse vector is embedded in an otherwise
random subspace. We will show that under the specific random
model, problem (I.2) is tractable by an efficient algorithm
based on nonconvex optimization.

A. Motivation

The general version of Problem (I.2), in which S can be an
arbitrary subspace, takes several forms in numerical compu-
tation and computer science, and underlies several important
problems in modern signal processing and machine learning.
Below we provide a sample of these applications.

1) Sparse Null Space and Matrix Sparsification: The sparse
null space problem is finding the sparsest matrix N whose
columns span the null space of a given matrix A. The problem
arises in the context of solving linear equality problems in
constrained optimization [5], null space methods for quadratic
programming [6], and solving underdetermined linear equa-
tions [7]. The matrix sparsification problem is of similar
flavor, the task is finding the sparsest matrix B which is
equivalent to a given full rank matrix A under elementary
column operations. Sparsity helps simplify many fundamental
matrix operations (see [8]), and the problem has applications
in areas such as machine learning [9] and in discovering cycle
bases of graphs [10]. Reference [11] discusses connections
between the two problems and also to other problems in
complexity theory.

2) Sparse (Complete) Dictionary Learning: In dictionary
learning, given a data matrix Y, one seeks an approximation
Y ≈ AX, such that A is a representation dictionary with
certain desired structure and X collects the representation
coefficients with maximal sparsity. Such compact represen-
tation naturally allows signal compression, and also facilitates
efficient signal acquisition and classification (see relevant
discussion in [12]). When A is required to be complete
(i.e., square and invertible), by linear algebra, we have2

row(Y) = row(X) [13]. Then the problem reduces to finding
sparsest vectors (directions) in the known subspace row(Y),
i.e. (I.2). Insights into this problem have led to new theoretical
developments on complete dictionary learning [13]–[15].

3) Sparse Principal Component Analysis (Sparse PCA):
In geometric terms, Sparse PCA (see, e.g., [16]–[18] for early
developments and [19], [20] for discussion of recent results)
concerns stable estimation of a linear subspace spanned by
a sparse basis, in the data-poor regime, i.e., when the available

2Here, row(·) denotes the row space.
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TABLE I

COMPARISON OF EXISTING METHODS FOR RECOVERING A PLANTED SPARSE VECTOR IN A SUBSPACE

data are not numerous enough to allow one to decouple the
subspace estimation and sparsification tasks. Formally, given a
data matrix Z = U0X0+E,3 where Z ∈ R

p×n collects column-
wise n data points, U0 ∈ R

p×r is the sparse basis, and E is a
noise matrix, one is asked to estimate U0 (up to sign, scale, and
permutation). Such a factorization finds applications in gene
expression, financial data analysis and pattern recognition [24].
When the subspace is known (say by the PCA estimator with
enough data samples), the problem again reduces to instances
of (I.2) and is already nontrivial.4 The full geometric sparse
PCA can be treated as finding sparse vectors in a subspace
that is subject to perturbation.

In addition, variants and generalizations of the problem (I.2)
have also been studied in applications regarding control and
optimization [25], nonrigid structure from motion [26], spec-
tral estimation and Prony’s problem [27], outlier rejection in
PCA [28], blind source separation [29], graphical model learn-
ing [30], and sparse coding on manifolds [31]; see also [32]
and the references therein.

B. Prior Arts

Despite these potential applications of problem (I.2), it is
only very recently that efficient computational surrogates with
nontrivial recovery guarantees have been discovered for some
cases of practical interest. In the context of sparse dictionary
learning, Spielman et al. [13] introduced a convex relaxation
which replaces the nonconvex problem (I.2) with a sequence
of linear programs (�1/�∞ Relaxation):

min
x

‖x‖1 , s.t. x(i) = 1, x ∈ S, 1 ≤ i ≤ p. (I.3)

They proved that when S is generated as a span of n random
sparse vectors, with high probability (w.h.p.), the relaxation
recovers these vectors, provided the probability of an entry
being nonzero is at most θ ∈ O

(
1/

√
n
)
. In the planted sparse

model, in which S is formed as direct sum of a single sparse
vector x0 and a “generic” subspace, Hand and Demanet proved
that (I.3) also correctly recovers x0, provided the fraction of
nonzeros in x0 scales as θ ∈ O

(
1/

√
n
)

[14]. One might
imagine improving these results by tightening the analyses.
Unfortunately, the results of [13] and [14] are essentially sharp:
when θ substantially exceeds �(1/

√
n), in both models the

3Variants of multiple-component formulations often add an additional
orthonormality constraint on U0 but involve a different notation of sparsity;
see, e.g., [16], [21]–[23].

4Reference [14] has also discussed this data-rich sparse PCA setting.

relaxation (I.3) provably breaks down. Moreover, the most
natural semidefinite programming (SDP) relaxation of (I.1),

min
X	0

‖X‖1 , s.t.
〈
A
A,X

〉
= 0, trace[X] = 1 (I.4)

also breaks down at exactly the same threshold
of θ ∼ O(1/

√
n).5

One might naturally conjecture that this 1/
√

n threshold is
simply an intrinsic price we must pay for having an efficient
algorithm, even in these random models. Some evidence
towards this conjecture might be borrowed from the superficial
similarity of (I.2)-(I.4) and sparse PCA [16]. In sparse PCA,
there is a substantial gap between what can be achieved with
currently available efficient algorithms and the information
theoretic optimum [19], [33]. Is this also the case for recov-
ering a sparse vector in a subspace? Is θ ∈ O

(
1/

√
n
)

simply
the best we can do with efficient, guaranteed algorithms?

Remarkably, this is not the case. Recently, Barak et al.
introduced a new rounding technique for sum-of-squares
relaxations, and showed that the sparse vector x0 in the
planted sparse model can be recovered when p ≥ �

(
n2
)

and
θ = �(1) [34]. It is perhaps surprising that this is possible
at all with a polynomial time algorithm. Unfortunately, the
runtime of this approach is a high-degree polynomial in p
(see Table I); for machine learning problems in which p is
often either the feature dimension or the sample size, this
algorithm is mostly of theoretical interest only. However, it
raises an interesting algorithmic question: Is there a prac-
tical algorithm that provably recovers a sparse vector with
θ 
 1/

√
n portion of nonzeros from a generic subspace S?

C. Contributions and Recent Developments

In this paper, we address the above problem under the
planted sparse model. We allow x0 to have up to θ0 p nonzero
entries, where θ0 ∈ (0, 1) is a constant. We provide a relatively
simple algorithm which, w.h.p., exactly recovers x0, provided
that p ≥ �

(
n4 log n

)
. A comparison of our results with

existing methods is shown in Table I. After initial submission

5This breakdown behavior is again in sharp contrast to the standard sparse
approximation problem (with b �= 0), in which it is possible to handle very
large fractions of nonzeros (say, θ = �(1/ log n), or even θ = �(1)) using a
very simple �1 relaxation [2], [3]

6All estimates here are based on the standard interior point methods for
solving linear and semidefinite programs. Customized solvers may result in
order-wise speedup for specific problems. ε is the desired numerical accuracy.

7Here our estimation is based on the degree-4 SOS hierarchy used in [34]
to obtain an initial approximate recovery.
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of our paper, Hopkins et al. [35] proposed a different sim-
ple algorithm based on the spectral method. This algorithm
guarantees recovery of the planted sparse vector also up to
linear sparsity, whenever p ≥ �(n2polylog(n)), and comes
with better time complexity.8

Our algorithm is based on alternating directions, with
two special twists. First, we introduce a special data driven
initialization, which seems to be important for achieving
θ = �(1). Second, our theoretical results require a second,
linear programming based rounding phase, which is similar
to [13]. Our core algorithm has very simple iterations, of linear
complexity in the size of the data, and hence should be scalable
to moderate-to-large scale problems.

Besides enjoying the θ ∼ �(1) guarantee that is out
of the reach of previous practical algorithms, our algorithm
performs well in simulations – empirically succeeding with
p ≥ � (n polylog(n)). It also performs well empirically on
more challenging data models, such as the complete dictionary
learning model, in which the subspace of interest contains not
one, but n random target sparse vectors. This is encouraging,
as breaking the O(1/

√
n) sparsity barrier with a practical

algorithm and optimal guarantee is an important problem in
theoretical dictionary learning [36]–[40]. In this regard, our
recent work [15] presents an efficient algorithm based on
Riemannian optimization that guarantees recovery up to linear
sparsity. However, the result is based on different ideas: a
different nonconvex formulation, optimization algorithm, and
analysis methodology.

D. Paper Organization, Notations and Reproducible Research

The rest of the paper is organized as follows. In Section II,
we provide a nonconvex formulation and show its capability of
recovering the sparse vector. Section III introduces the alter-
nating direction algorithm. In Section IV, we present our main
results and sketch the proof ideas. Experimental evaluation of
our method is provided in Section V. We conclude the paper by
drawing connections to related work and discussing potential
improvements in Section VI. Full proofs are all deferred to
the appendix sections.

For a matrix X, we use xi and x j to denote its i -th
column and j -th row, respectively, all in column vector form.
Moreover, we use x(i) to denote the i -th component of a
vector x. We use the compact notation [k] .= {1, . . . , k} for any
positive integer k, and use c or C , and their indexed versions
to denote absolute numerical constants. The scope of these
constants are always local, namely within a particular lemma,
proposition, or proof, such that the apparently same constant in
different contexts may carry different values. For probability
events, sometimes we will just say the event holds “with high
probability” (w.h.p.) if the probability of failure is dominated
by p−κ for some κ > 0.

The codes to reproduce all the figures and experimental
results can be found online at: https://github.com/sunju/psv.

8Despite these improved guarantees in the planted sparse model, our method
still produces more appealing results on real imagery data – see Section V-B
for examples.

II. PROBLEM FORMULATION AND GLOBAL OPTIMALITY

We study the problem of recovering a sparse vector
x0 �= 0 (up to scale), which is an element of a known subspace
S ⊂ R

p of dimension n, provided an arbitrary orthonormal
basis Y ∈ R

p×n for S. Our starting point is the nonconvex
formulation (I.2). Both the objective and the constraint set
are nonconvex, and hence it is not easy to optimize over.
We relax (I.2) by replacing the �0 norm with the �1 norm.
For the constraint x �= 0, since in most applications we only
care about the solution up to scaling, it is natural to force x
to live on the unit sphere S

n−1, giving

min
x

‖x‖1 , s.t. x ∈ S, ‖x‖2 = 1. (II.1)

This formulation is still nonconvex, and for general nonconvex
problems it is known to be NP-hard to find even a local
minimizer [41]. Nevertheless, the geometry of the sphere is
benign enough, such that for well-structured inputs it actu-
ally will be possible to give algorithms that find the global
optimizer.

The formulation (II.1) can be contrasted with (I.3), in which
effectively we optimize the �1 norm subject to the constraint
‖x‖∞ = 1: because the set {x : ‖x‖∞ = 1} is polyhedral,
the �∞-constrained problem immediately yields a sequence
of linear programs. This is very convenient for computation
and analysis. However, it suffers from the aforementioned
breakdown behavior around ‖x0‖0 ∼ p/

√
n. In contrast,

though the sphere ‖x‖2 = 1 is a more complicated geometric
constraint, it will allow much larger number of nonzeros in x0.
Indeed, if we consider the global optimizer of a reformulation
of (II.1):

min
q∈Rn

‖Yq‖1 , s.t. ‖q‖2 = 1, (II.2)

where Y is any orthonormal basis for S, the sufficient condi-
tion that guarantees exact recovery under the planted sparse
model for the subspace is as follows:

Theorem 1 (�1/�2 Recovery, Planted Sparse Model): There
exists a constant θ0 > 0, such that if the subspace S follows
the planted sparse model

S = span (x0, g1, . . . , gn−1) ⊂ R
p,

where gi ∼i.i.d. N (0, 1
p I), and x0 ∼i.i.d.

1√
θp

Ber(θ) are all

jointly independent and 1/
√

n < θ < θ0, then the unique
(up to sign) optimizer q� to (II.2), for any orthonormal basis
Y of S, produces Yq� = ξx0 for some ξ �= 0 with probability
at least 1−cp−2, provided p ≥ Cn. Here c and C are positive
constants.

Hence, if we could find the global optimizer of (II.2), we
would be able to recover x0 whose number of nonzero entries
is quite large – even linear in the dimension p (θ = �(1)).
On the other hand, it is not obvious that this should be possi-
ble: (II.2) is nonconvex. In the next section, we will describe a
simple heuristic algorithm for approximately solving a relaxed
version of the �1/�2 problem (II.2). More surprisingly, we
will then prove that for a class of random problem instances,
this algorithm, plus an auxiliary rounding technique, actually
recovers the global optimizer – the target sparse vector x0.
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Algorithm 1 Nonconvex ADM Alogrithm

Input: A matrix Y ∈ R
p×n with Y
Y = I, initialization

q(0), threshold parameter λ > 0.
Output: The recovered sparse vector x̂0 = Yq(k)

1: for k = 0, . . . , O
(
n4 log n

)
do

2: x(k+1) = Sλ[Yq(k)],
3: q(k+1) = Y
x(k+1)

∥∥Y
x(k+1)
∥∥

2

,

4: end for

The proof requires a detailed probabilistic analysis, which is
sketched in Section IV-B.

Before continuing, it is worth noting that the formula-
tion (II.1) is in no way novel – see, e.g., the work of [29] in
blind source separation for precedent. However, our algorithms
and subsequent analysis are novel.

III. ALGORITHM BASED ON ALTERNATING

DIRECTION METHOD (ADM)

To develop an algorithm for solving (II.2), it is useful to
consider a slight relaxation of (II.2), in which we introduce
an auxiliary variable x ≈ Yq:

min
q,x

f (q, x) .= 1

2
‖Yq − x‖2

2 + λ ‖x‖1 , s.t. ‖q‖2 = 1.

(III.1)

Here, λ > 0 is a penalty parameter. It is not difficult to
see that this problem is equivalent to minimizing the Huber
M-estimator over Yq. This relaxation makes it possible to
apply the alternating direction method to this problem. This
method starts from some initial point q(0), alternates between
optimizing with respect to (w.r.t.) x and optimizing w.r.t. q:

x(k+1) = arg minx
1

2

∥
∥
∥Yq(k) − x

∥
∥
∥

2

2
+ λ ‖x‖1 , (III.2)

q(k+1) = arg minq∈Sn−1
1

2

∥
∥
∥Yq − x(k+1)

∥
∥
∥

2

2
, (III.3)

where x(k) and q(k) denote the values of x and q in the
k-th iteration. Both (III.2) and (III.3) have simple closed form
solutions:

x(k+1) = Sλ[Yq(k)], q(k+1) = Y
x(k+1)
∥
∥Y
x(k+1)

∥
∥

2

, (III.4)

where Sλ [x] = sign(x)max {|x | − λ, 0} is the soft-
thresholding operator. The proposed ADM algorithm is
summarized in Algorithm 1.

The algorithm is simple to state and easy to implement.
However, if our goal is to recover the sparsest vector x0, some
additional tricks are needed.

A. Initialization

Because the problem (II.2) is nonconvex, an arbitrary or
random initialization may not produce a global minimizer.9

9More precisely, in our models, random initialization does work, but only
when the subspace dimension n is extremely low compared to the ambient
dimension p.

In fact, good initializations are critical for the proposed ADM
algorithm to succeed in the linear sparsity regime. For this
purpose, we suggest using every normalized row of Y as
initializations for q, and solving a sequence of p nonconvex
programs (II.2) by the ADM algorithm.

To get an intuition of why our initialization works, recall the
planted sparse model S = span(x0, g1, . . . , gn−1) and suppose

Y = [
x0 | g1 | · · · | gn−1

] ∈ R
p×n . (III.5)

If we take a row yi of Y, in which x0(i) is nonzero,
then x0(i) = 


(
1/

√
θp
)
. Meanwhile, the entries of

g1(i), . . . gn−1(i) are all N (0, 1/p), and so their magnitude
have size about 1/

√
p. Hence, when θ is not too large, x0(i)

will be somewhat bigger than most of the other entries in yi .
Put another way, yi is biased towards the first standard basis
vector e1. Now, under our probabilistic model assumptions,
Y is very well conditioned: Y



Y ≈ I.10 Using the Gram-

Schmidt process,11 we can find an orthonormal basis Y for
S via:

Y = YR, (III.6)

where R is upper triangular, and R is itself well-conditioned:
R ≈ I. Since the i -th row yi of Y is biased in the direction
of e1 and R is well-conditioned, the i -th row yi of Y is
also biased in the direction of e1. In other words, with this
canonical orthobasis Y for the subspace, the i -th row of Y is
biased in the direction of the global optimizer. The heuristic
arguments are made rigorous in Appendix B and Appendix D.

What if we are handed some other basis Ŷ = YU, where
U is an arbitary orthogonal matrix? Suppose q� is a global
optimizer to (II.2) with the input matrix Y, then it is easy to
check that, U
q� is a global optimizer to (II.2) with the input
matrix Ŷ. Because

〈
(YU)
ei ,U
q�

〉
=
〈
Y
ei ,q�

〉
,

our initialization is invariant to any rotation of the orthobasis.
Hence, even if we are handed an arbitrary orthobasis for S,
the i -th row is still biased in the direction of the global
optimizer.

B. Rounding by Linear Programming (LP)

Let q denote the output of Algorithm 1. As illustrated in
Fig. 1, we will prove that with our particular initialization
and an appropriate choice of λ, ADM algorithm uniformly
moves towards the optimal over a large portion of the sphere,
and its solution falls within a certain small radius of the
globally optimal solution q� to (II.2). To exactly recover q�,
or equivalently to recover the exact sparse vector x0 = γYq�
for some γ �= 0, we solve the linear program

min
q

‖Yq‖1 s.t. 〈r,q〉 = 1 (III.7)

with r = q. Since the feasible set {q | 〈q,q〉 = 1} is essentially
the tangent space of the sphere S

n−1 at q, whenever q is close

10This is the common heuristic that “tall random matrices are well condi-
tioned” [42].

11...QR decomposition in general with restriction that R11 = 1.

Authorized licensed use limited to: New York University. Downloaded on August 26,2020 at 06:14:52 UTC from IEEE Xplore.  Restrictions apply. 



QU et al.: FINDING A SPARSE VECTOR IN A SUBSPACE: LINEAR SPARSITY USING ALTERNATING DIRECTIONS 5859

Fig. 1. An illustration of the proof sketch for our ADM algorithm.

enough to q�, one should expect that the optimizer of (III.7)
exactly recovers q� and hence x0 up to scale. We will prove
that this is indeed true under appropriate conditions.

IV. MAIN RESULTS AND SKETCH OF ANALYSIS

A. Main Results

In this section, we describe our main theoretical result,
which shows that w.h.p. the algorithm described in the previ-
ous section succeeds.

Theorem 2: Suppose that S obeys the planted sparse model,
and let the columns of Y form an arbitrary orthonormal
basis for the subspace S. Let y1, . . . , yp ∈ R

n denote the
(transposes of) the rows of Y. Apply Algorithm 1 with λ =
1/

√
p, using initializations q(0) = y1/

∥
∥y1

∥
∥

2 , . . . , yp/ ‖yp‖2,
to produce outputs q1, . . . ,qp. Solve the linear pro-
gram (III.7) with r = q1, . . . ,qp, to produce q̂1, . . . , q̂p. Set
i� ∈ arg mini ‖Yq̂i‖1. Then

Yq̂i� = γ x0, (IV.1)

for some γ �= 0 with probability at least 1 − cp−2, provided

p ≥ Cn4 log n, and
1√
n

≤ θ ≤ θ0. (IV.2)

Here C, c and θ0 are positive constants.
Remark 3: We can see that the result in Theorem 2 is

suboptimal in sample complexity compared to the global opti-
mality result in Theorem 1 and Barak et al.’s result [34] (and
the subsequent work [35]). For successful recovery, we require
p ≥ �

(
n4 log n

)
, while the global optimality and Barak et al.

demand p ≥ � (n) and p ≥ �
(
n2
)
, respectively. Aside

from possible deficiencies in our current analysis, compared
to Barak et al., we believe this is still the first practical and
efficient method which is guaranteed to achieve θ ∼ �(1) rate.
The lower bound on θ in Theorem 2 is mostly for convenience
in the proof; in fact, the LP rounding stage of our algorithm
already succeeds w.h.p. when θ ∈ O

(
1/

√
n
)
.

B. A Sketch of Analysis

In this section, we briefly sketch the main ideas of proving
our main result in Theorem 2, to show that the “initialization +
ADM + LP rounding” pipeline recovers x0 under the stated
technical conditions, as illustrated in Fig. 1. The proof of our
main result requires rather detailed technical analysis of the
iteration-by-iteration properties of Algorithm 1, most of which
is deferred to the appendices.

As noted in Section III, the ADM algorithm is invari-
ant to change of basis. So w.l.o.g., let us assume Y =[
x0 | g1 | · · · | gn−1

]
and let Y to be its orthogonalization,

i.e.,12

Y =
[

x0

‖x0‖2
| Px⊥

0
G
(

G
Px⊥
0

G
)−1/2

]
. (IV.3)

When p is large, Y is nearly orthogonal, and hence Y is very
close to Y. Thus, in our proofs, whenever convenient, we make
the arguments on Y first and then “propagate” the quantitative
results onto Y by perturbation arguments. With that noted, let
y1, · · · , yp be the transpose of the rows of Y, and note that
these are all independent random vectors. To prove the result
of Theorem 2, we need the following results. First, given the
specified Y, we show that our initialization is biased towards
the global optimum:

Proposition 4 (Good Initialization): Suppose θ > 1/
√

n
and p ≥ Cn. It holds with probability at least 1 − cp−2

that at least one of our p initialization vectors suggested in

Section III, say q(0)i = yi/
∥
∥yi

∥
∥

2, obeys
∣
∣
∣
∣∣

〈
yi

∥
∥yi

∥
∥

2

, e1

〉∣∣
∣
∣∣
≥ 1

10
√
θn
. (IV.4)

Here C, c are positive constants.
Proof: See Appendix D. �

12Note that with probability one, the inverse matrix square-root in Y is
well defined. So Y is well defined w.h.p. (i.e., except for x0 = 0). See more
quantitative characterization of Y in Appendix B.
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Second, we define a vector-valued random process Q(q) on
q ∈ S

n−1, via

Q(q) = 1

p

p∑

i=1

yi Sλ
[
q
yi

]
, (IV.5)

so that based on (III.4), one step of the ADM algorithm takes
the form:

q(k+1) = Q
(
q(k)

)
∥
∥Q

(
q(k)

)∥∥
2

(IV.6)

This is a very favorable form for analysis: the term in the
numerator Q

(
q(k)

)
is a sum of p independent random vectors

with q(k) viewed as fixed. We study the behavior of the
iteration (IV.6) through the random process Q

(
q(k)

)
. We want

to show that w.h.p. the ADM iterate sequence q(k) converges to
some small neighborhood of ±e1, so that the ADM algorithm
plus the LP rounding (described in Section III) successfully
retrieves the sparse vector x0/‖x0‖ = Ye1. Thus, we hope that
in general, Q(q) is more concentrated on the first coordinate
than q ∈ S

n−1. Let us partition the vector q as q = [q1; q2],
with q1 ∈ R and q2 ∈ R

n−1; and correspondingly Q(q) =
[Q1(q); Q2(q)]. The inner product of Q(q)/ ‖Q(q)‖2 and e1
is strictly larger than the inner product of q and e1 if and only
if

|Q1(q)|
|q1| >

‖Q2(q)‖2

‖q2‖2
.

In the following proposition, we show that w.h.p., this inequal-
ity holds uniformly over a significant portion of the sphere

�
.=
{

q ∈ S
n−1 | 1

10
√

nθ
≤ |q1| ≤ 3

√
θ, ‖q2‖2 ≥ 1

10

}
,

(IV.7)

so the algorithm moves in the correct direction. Let us define
the gap G(q) between the two quantities |Q1(q)| / |q1| and
‖Q2(q)‖2 / ‖q2‖2 as

G(q)
.= |Q1(q)|

|q1| − ‖Q2(q)‖2

‖q2‖2
, (IV.8)

and we show that the following result is true:
Proposition 5 (Uniform Lower Bound for Finite Sample

Gap): There exists a constant θ0 ∈ (0, 1), such that when
p ≥ Cn4 log n, the estimate

inf
q∈� G(q) ≥ 1

104θ2np

holds with probability at least 1 − cp−2, provided θ ∈(
1/

√
n, θ0

)
. Here C, c are positive constants.

Proof: See Appendix E. �
Next, we show that whenever |q1| ≥ 3

√
θ , w.h.p. the iterates

stay in a “safe region” with |q1| ≥ 2
√
θ which is enough for

LP rounding (III.7) to succeed.
Proposition 6 (Safe Region for Rounding): There exists a

constant θ0 ∈ (0, 1), such that when p ≥ Cn4 log n, it holds
with probability at least 1 − cp−2 that

|Q1(q)|
‖Q(q)‖2

≥ 2
√
θ

for all q ∈ S
n−1 satisfying |q1| > 3

√
θ , provided θ ∈(

1/
√

n, θ0
)
. Here C, c are positive constants.

Proof: See Appendix F. �
In addition, the following result shows that the number of
iterations for the ADM algorithm to reach the safe region can
be bounded grossly by O(n4 log n) w.h.p..

Proposition 7: (Iteration Complexity of Reaching the Safe
Region): There is a constant θ0 ∈ (0, 1), such that when
p ≥ Cn4 log n, it holds with probability at least 1 − cp−2

that the ADM algorithm in Algorithm 1, with any initialization

q(0) ∈ S
n−1 satisfying

∣∣
∣q(0)1

∣∣
∣ ≥ 1

10
√
θn

, will produce some

iterate q with |q̄1| > 3
√
θ at least once in at most O(n4 log n)

iterations, provided θ ∈ (
1/

√
n, θ0

)
. Here C, c are positive

constants.
Proof: See Appendix G. �

Moreover, we show that the LP rounding (III.7) with input
r = q exactly recovers the optimal solution w.h.p., whenever
the ADM algorithm returns a solution q with first coordinate∣
∣q1

∣
∣ > 2

√
θ .

Proposition 8 (Success of Rounding): There is a constant
θ0 ∈ (0, 1), such that when p ≥ Cn, the following holds
with probability at least 1 − cp−2 provided θ ∈ (1/

√
n, θ0):

Suppose the input basis is Y defined in (IV.3) and the ADM
algorithm produces an output q ∈ S

n−1 with |q1| > 2
√
θ .

Then the rounding procedure with r = q returns the desired
solution ±e1. Here C, c are positive constants.

Proof: See Appendix H. �
Finally, given p ≥ Cn4 log n for a sufficiently large

constant C , we combine all the results above to complete the
proof of Theorem 2.

Proof of Theorem 2: W.l.o.g., let us again first consider
Y as defined in (III.5) and its orthogonalization Y in a
“natural/canonical” form (IV.3). We show that w.h.p. our
algorithmic pipeline described in Section III exactly recovers
the optimal solution up to scale, via the following argument:

1) Good initializers. Proposition 4 shows that w.h.p.,
at least one of the p initialization vectors, say
q(0)i = yi/

∥
∥yi

∥
∥

2, obeys
∣
∣∣
〈
q(0)i , e1

〉∣∣∣ ≥ 1

10
√
θn
,

which implies that q(0)i is biased towards the global
optimal solution.

2) Uniform progress away from the equator. By
Proposition 5, for any θ ∈ (1/

√
n, θ0) with a constant

θ0 ∈ (0, 1),

G(q) = |Q1(q)|
|q1| − ‖Q2(q)‖2

‖q‖2
≥ 1

104θ2np
(IV.9)

holds uniformly for all q ∈ S
n−1 in the region 1

10
√
θn

≤
|q1| ≤ 3

√
θ w.h.p.. This implies that with an input

q(0) such that
∣
∣
∣q(0)1

∣
∣
∣ ≥ 1

10
√
θn

, the ADM algorithm will

eventually obtain a point q(k) for which
∣
∣q(k)

∣
∣ ≥ 3

√
θ , if

sufficiently many iterations are allowed.
3) No jumps away from the caps. Proposition 6 shows

that for any θ ∈ (1/√n, θ0) with a constant θ0 ∈ (0, 1),
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w.h.p.,

Q1(q)
‖Q(q)‖2

≥ 2
√
θ

holds for all q ∈ S
n−1 with |q1| ≥ 3

√
θ . This implies

that once |q(k)1 | ≥ 3
√
θ for some iterate k, all the

future iterates produced by the ADM algorithm stay
in a “spherical cap” region around the optimum with
|q1| ≥ 2

√
θ .

4) Location of stopping points. As shown in Proposition 7,
w.h.p., the strictly positive gap G(q) in (IV.9) ensures that
one needs to run at most O

(
n4 log n

)
iterations to first

encounter an iterate q(k) such that |q(k)1 | ≥ 3
√
θ . Hence,

the steps above imply that, w.h.p., Algorithm 1 fed with
the proposed initialization scheme successively produces
iterates q ∈ S

n−1 with its first coordinate
∣
∣q1

∣
∣ ≥ 2

√
θ

after O
(
n4 log n

)
steps.

5) Rounding succeeds when |r1| ≥ 2
√
θ . Proposition 8

proves that w.h.p., the LP rounding (III.7) with an input
r = q produces the solution ±x0 up to scale.

Taken together, these claims imply that from at least one
of the initializers q(0), the ADM algorithm will produce an
output q which is accurate enough for LP rounding to exactly
return x0/‖x0‖2. On the other hand, our �1/�2 optimality
theorem (Theorem 1) implies that ±x0 are the unique vectors
with the smallest �1 norm among all unit vectors in the
subspace. Since w.h.p. x0/‖x0‖2 is among the p unit vectors
q̂1, . . . , q̂p our p row initializers finally produce, our minimal
�1 norm selector will successfully locate x0/‖x0‖2 vector.

For the general case when the input is an arbitrary orthonor-
mal basis Ŷ = YU for some orthogonal matrix U, the target
solution is U
e1. The following technical pieces are perfectly
parallel to the argument above for Y.

1) Discussion at the end of Appendix D implies that w.h.p.,
at least one row of Ŷ provides an initial point q(0) such
that

∣
∣〈q(0),U
e1

〉∣∣ ≥ 1
10

√
θn

.
2) Discussion following Proposition 5 in Appendix E indi-

cates that for all q such that 1
10

√
θn

≤ ∣
∣〈q,U
e1

〉∣∣ ≤ 3
√
θ ,

there is a strictly positive gap, indicating steady progress
towards a point q(k) such that

∣
∣〈q(k),U
e1

〉∣∣ ≥ 3
√
θ .

3) Discussion at the end of Appendix F implies that once
q satisfies

∣
∣〈q,U
e1

〉∣∣, the next iterate will not move far
away from the target:

∣
∣
∣
〈
Q
(
q; Ŷ

)
/
∥
∥Q

(
q; Ŷ

)∥∥
2 ,U
e1

〉∣∣
∣ ≥ 2

√
θ.

4) Repeating the argument in Appendix G for general
input Ŷ shows it is enough to run the ADM algo-
rithm O

(
n4 log n

)
iterations to cross the range 1

10
√
θn

≤
∣
∣〈q,U
e1

〉∣∣ ≤ 3
√
θ . So the argument above together

dictates that with the proposed initialization, w.h.p., the
ADM algorithm produces an output q that satisfies∣
∣〈q,U
e1

〉∣∣ ≥ 2
√
θ , if we run at least O

(
n4 log n

)

iterations.
5) Since the ADM returns q satisfying

∣
∣〈q,R
e1

〉∣∣ ≥ 2
√
θ ,

discussion at the end of Appendix H implies that we
will obtain a solution q� = ±U
e1 up to scale as the

optimizer of the rounding program, exactly the target
solution.

Hence, we complete the proof. �
Remark 9: Under the planted sparse model, in practice

the ADM algorithm with the proposed initialization converges
to a global optimizer of (III.1) that correctly recovers x0.
In fact, simple calculation shows such desired point for
successful recovery is indeed the only critical point of (III.1)
near the pole in Fig. 1. Unfortunately, using the current
analytical framework, we did not succeed in proving such
convergence in theory. Proposition 6 and 7 imply that after
O(n4 log n) iterations, however, the ADM sequence will stay
in a small neighborhood of the target. Hence, we proposed
to stop after O(n4 log n) steps, and then round the output
using the LP that provable recover the target, as implied by
Proposition 6 and 8. So the LP rounding procedure is for the
purpose of completing the theory, and seems not necessary in
practice. We suspect alternative analytical strategies, such as
the geometrical analysis that we will discuss in Section VI,
can likely get around the artifact.

V. EXPERIMENTAL RESULTS

In this section, we show the performance of the proposed
ADM algorithm on both synthetic and real datasets. On the
synthetic dataset, we show the phase transition of our algo-
rithm on both the planted sparse and the dictionary learning
models; for the real dataset, we demonstrate how seeking
sparse vectors can help discover interesting patterns on face
images.

A. Phase Transition on Synthetic Data

For the planted sparse model, for each pair of (k, p), we
generate the n dimensional subspace S ⊂ R

p by direct sum
of x0 and G: x0 ∈ R

p is a k-sparse vector with uniformly
random support and all nonzero entries equal to 1, and G ∈
R

p×(n−1) is an i.i.d. Gaussian matrix distributed by N (0, 1/p).
So one basis Y of the subspace S can be constructed by
Y = GS ([x0,G])U, where GS (·) denotes the Gram-Schmidt
orthonormalization operator and U ∈ R

n×n is an arbitrary
orthogonal matrix. For each p, we set the regularization
parameter in (III.1) as λ = 1/

√
p, use all the normalized rows

of Y as initializations of q for the proposed ADM algorithm,
and run the alternating steps for 104 iterations. We determine
the recovery to be successful whenever ‖x0/‖x0‖2 − Yq‖2 ≤
10−2 for at least one of the p trials (we set the tolerance
relatively large as we have shown that LP rounding exactly
recovers the solutions with approximate input). To determine
the empirical recovery performance of our ADM algorithm,
first we fix the relationship between n and p as p = 5n log n,
and plot out the phase transition between k and p. Next, we
fix the sparsity level θ = 0.2 (or k = 0.2 p), and plot out the
phase transition between p and n. For each pair of (p, k) or
(n, p), we repeat the simulation for 10 times. Fig. 2 shows
both phase transition plots.

We also experiment with the complete dictionary learning
model as in [13] (see also [15]). Specifically, the observation
is assumed to be Y = A0X0, where A0 is a square, invertible
matrix, and X0 a n × p sparse matrix. Since A0 is invertible,
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Fig. 2. Phase transition for the planted sparse model using the ADM algorithm: (a) with fixed relationship between p and n: p = 5n log n; (b) with fixed
relationship between p and k: k = 0.2p. White indicates success and black indicates failure.

Fig. 3. Phase transition for the dictionary learning model using the ADM algorithm: (a) with fixed relationship between p and n: p = 5n log n; (b) with
fixed relationship between p and k: k = 0.2p. White indicates success and black indicates failure.

the row space of Y is the same as that of X0. For each pair
of (k, n), we generate X0 = [x1, · · · , xn]
, where each vector
xi ∈ R

p is k-sparse with every nonzero entry following i.i.d.
Gaussian distribution, and construct the observation by Y
 =
GS

(
X


0

)
U
. We repeat the same experiment as for the planted

sparse model described above. The only difference is that here
we determine the recovery to be successful as long as one
sparse row of X0 is recovered by one of those p programs.
Fig. 3 shows both phase transition plots.

Fig. 2(a) and Fig. 3(a) suggest our ADM algorithm could
work into the linear sparsity regime for both models, provided
p ≥ �(n log n). Moreover, for both models, the log n factor
seems necessary for working into the linear sparsity regime,
as suggested by Fig. 2(b) and Fig. 3(b): there are clear
nonlinear transition boundaries between success and failure
regions. For both models, O(n log n) sample requirement
is near optimal: for the planted sparse model, obviously
p ≥ �(n) is necessary; for the complete dictionary learn-
ing model, [13] proved that p ≥ �(n log n) is required
for exact recovery. For the planted sparse model, our
result p ≥ �(n4 log n) is far from this much lower

empirical requirement. Fig 2(b) further suggests that alterna-
tive reformulation and algorithm are needed to solve (II.1) so
that the optimal recovery guarantee as depicted in Theorem 1
can be obtained.

B. Exploratory Experiments on Faces

It is well known in computer vision that the collection of
images of a convex object only subject to illumination changes
can be well approximated by a low-dimensional subspaces
in raw-pixel space [43]. We will play with face subspaces
here. First, we extract face images of one person (65 images)
under different illumination conditions. Then we apply robust
principal component analysis [44] to the data and get a low
dimensional subspace of dimension 10, i.e., the basis Y ∈
R

32256×10. We apply the ADM + LP algorithm to find the
sparsest elements in such a subspace, by randomly selecting
10% rows of Y as initializations for q. We judge the sparsity
in the �1/�2 sense, that is, the sparsest vector x̂0 = Yq�

should produce the smallest ‖Yq‖1 / ‖Yq‖2 among all results.
Once some sparse vectors are found, we project the subspace
onto orthogonal complement of the sparse vectors already

Authorized licensed use limited to: New York University. Downloaded on August 26,2020 at 06:14:52 UTC from IEEE Xplore.  Restrictions apply. 



QU et al.: FINDING A SPARSE VECTOR IN A SUBSPACE: LINEAR SPARSITY USING ALTERNATING DIRECTIONS 5863

Fig. 4. The first four sparse vectors extracted for one person in the Yale B database under different illuminations. (Top) by our ADM algorithm; (Bottom)
by the speeding-up SOS algorithm proposed in [35].

found,13 and continue the seeking process in the projected
subspace. Fig. 4(Top) shows the first four sparse vectors we
get from the data. We can see they correspond well to dif-
ferent extreme illumination conditions. We also implemented
the spectral method (with the LP post-processing) proposed
in [35] for comparison under the same protocol. The result
is presented as Fig. 4(Bottom): the ratios ‖·‖�1 / ‖·‖�2 are
significantly higher, and the ratios ‖·‖�4 / ‖·‖�2 (this is the
metric to be maximized in [35] to promote sparsity) are
significantly lower. By these two criteria the spectral method
with LP rounding consistently produces vectors with higher
sparsity levels under our evaluation protocol. Moreover, the
resulting images are harder to interpret physically.

Second, we manually select ten different persons’ faces
under the normal lighting condition. Again, the dimension
of the subspace is 10 and Y ∈ R

32256×10. We repeat the
same experiment as stated above. Fig. 5 shows four sparse
vectors we get from the data. Interestingly, the sparse vectors
roughly correspond to differences of face images concen-
trated around facial parts that different people tend to differ
from each other, e.g., eye brows, forehead hair, nose, etc.
By comparison, the vectors returned by the spectral
method [35] are relatively denser and the sparsity patterns in
the images are less structured physically.

In sum, our algorithm seems to find useful sparse vectors for
potential applications, such as peculiarity discovery in first set-
ting, and locating differences in second setting. Nevertheless,
the main goal of this experiment is to invite readers to think
about similar pattern discovery problems that might be cast

13The idea is to build a sparse, orthonormal basis for the subspace in a
greedy manner.

as the problem of seeking sparse vectors in a subspace. The
experiment also demonstrates in a concrete way the practicality
of our algorithm, both in handling data sets of realistic size and
in producing meaningful results even beyond the (idealized)
planted sparse model that we adopted for analysis.

VI. CONNECTIONS AND DISCUSSION

For the planted sparse model, there is a substantial per-
formance gap in terms of p-n relationship between the
our optimality theorem (Theorem 1), empirical simulations,
and guarantees we have obtained via efficient algorithm
(Theorem 2). More careful and tighter analysis based on
decoupling [45] and chaining [46], [47] and geometrical
analysis described below can probably help bridge the gap
between our theoretical and empirical results. Matching the
theoretical limit depicted in Theorem 1 seems to require novel
algorithmic ideas. The random models we assume for the
subspace can be extended to other random models, particularly
for dictionary learning where all the bases are sparse (e.g.,
Bernoulli-Gaussian random model).

This work is part of a recent surge of research efforts
on deriving provable and practical nonconvex algorithms
to central problems in modern signal processing and
machine learning. These problems include low-rank matrix
recovery/completion [48]–[56], tensor recovery/decomposi-
tion [57]–[61], phase retrieval [62]–[65], dictionary learn-
ing [15], [36]–[40], and so on.14 Our approach, like the
others, is to start with a carefully chosen, problem-specific

14The webpage http://sunju.org/research/nonconvex/ maintained by the sec-
ond author contains pointers to the growing list of work in this direction.
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Fig. 5. The first four sparse vectors extracted for 10 persons in the Yale B database under normal illuminations. (Top) by our ADM algorithm; (Bottom) by
the speeding-up SOS algorithm proposed in [35].

Fig. 6. Function landscape of f (q) with θ = 0.4 for n = 3. (Left) f (q) over the sphere S
2. Note that near the spherical caps around the north and south

poles, there are no critical points and the gradients are always nonzero; (Right) Projected function landscape by projecting the upper hemisphere onto the
equatorial plane. Mathematically the function g(w) : e⊥

3 �→ R obtained via the reparameterization q(w) = [w;
√

1 − ‖w‖2]. Corresponding to the left, there
is no undesired critical point around 0 within a large radius.

initialization, and then perform a local analysis of the subse-
quent iterates to guarantee convergence to a good solution.
In comparison, our subsequent work on complete dictio-
nary learning [15] and generalized phase retrieval [65] has
taken a geometrical approach by characterizing the function
landscape and designing efficient algorithm accordingly. The
geometric approach has allowed provable recovery via efficient
algorithms, with an arbitrary initialization. The article [66]
summarizes the geometric approach and its applicability to
several other problems of interest.

A hybrid of the initialization and the geometric approach
discussed above is likely to be a powerful computational
framework. To see it in action for the current planted sparse

vector problem, in Fig. 6 we provide the asymptotic function
landscape (i.e., p → ∞) of the Huber loss on the sphere S

2

(aka the relaxed formulation we tried to solve (III.1)). It is
clear that with an initialization that is biased towards either
the north or the south pole, we are situated in a region where
the gradients are always nonzero and points to the favorable
directions such that many reasonable optimization algorithms
can take the gradient information and make steady progress
towards the target. This will probably ease the algorithm
development and analysis, and help yield tight performance
guarantees.

We provide a very efficient algorithm for finding a sparse
vector in a subspace, with strong guarantee. Our algorithm
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is practical for handling large datasets—in the experiment on
the face dataset, we successfully extracted some meaningful
features from the human face images. However, the potential
of seeking sparse/structured element in a subspace seems
largely unexplored, despite the cases we mentioned at the start.
We hope this work could inspire more application ideas.

APPENDIX A
TECHNICAL TOOLS AND PRELIMINARIES

In this appendix, we record several lemmas that are useful
for our analysis.

Lemma 10: Let ψ(x) and �(x) to denote the probability
density function (pdf) and the cumulative distribution function
(cdf) for the standard normal distribution:

(Standard Normal pdf)ψ(x) = 1√
2π

exp

{
− x2

2

}

(Standard Normal cdf)�(x) = 1√
2π

∫ x

−∞
exp

{
− t2

2

}
dt,

Suppose a random variable X ∼ N (0, σ 2), with the pdf
fσ (x) = 1

σ ψ
( x
σ

)
, then for any t2 > t1 we have

∫ t2

t1
fσ (x)dx = �

(
t2
σ

)
−�

(
t1
σ

)
,

∫ t2

t1
x fσ (x)dx = −σ

[
ψ

(
t2
σ

)
− ψ

(
t1
σ

)]
,

∫ t2

t1
x2 fσ (x)dx = σ 2

[
�

(
t2
σ

)
−�

(
t1
σ

)]

− σ
[

t2ψ

(
t2
σ

)
− t1ψ

(
t1
σ

)]
.

Lemma 11 (Taylor Expansion of Standard Gaussian cdf
and pdf): Assume ψ(x) and �(x) be defined as above. There
exists some universal constant Cψ > 0 such that for any
x0, x ∈ R,

|ψ(x)− [ψ(x0)− x0ψ (x0) (x − x0)]| ≤ Cψ(x − x0)
2,

|�(x)− [�(x0)+ ψ(x0)(x − x0)]| ≤ Cψ(x − x0)
2.

Lemma 12 (Matrix Induced Norms): For any matrix A ∈
R

p×n, the induced matrix norm from �p → �q is defined as

‖A‖�p→�q
.= sup

‖x‖p=1
‖Ax‖q .

In particular, let A = [a1, · · · , an] = [
a1, · · · , ap

]

, we have

‖A‖�2→�1 = sup
‖x‖2=1

p∑

k=1

∣
∣
∣a


k x
∣
∣
∣ , ‖A‖�2→�∞ = max

1≤k≤p

∥
∥
∥ak

∥
∥
∥

2
,

‖AB‖�p→�r ≤ ‖A‖�q→�r ‖B‖�p→�q ,

and B is any matrix of size compatible with A.
Lemma 13 (Moments of the Gaussian Random Variable):

If X ∼ N (
0, σ 2

X

)
, then it holds for all integer m ≥ 1 that

E
[|X |m] = σm

X (m − 1)!!
[√

2

π
�m=2k+1 + �m=2k

]

≤ σm
X (m − 1)!!, k = �m/2�.

Lemma 14 (Moments of the χ Random Variable): If X ∼
χ (n), i.e., X = ‖x‖2 for x ∼ N (0, I), then it holds for all
integer m ≥ 1 that

E
[
Xm] = 2m/2� (m/2 + n/2)

� (n/2)
≤ m!! nm/2.

Lemma 15 (Moments of the χ2 Random Variable): If X ∼
χ2 (n), i.e., X = ‖x‖2

2 for x ∼ N (0, I), then it holds for all
integer m ≥ 1 that

E
[
Xm] = 2m � (m + n/2)

� (n/2)

=
m∏

k=1

(n + 2k − 2) ≤ m!
2
(2n)m .

Lemma 16 (Moment-Control Bernstein’s Inequality for
Random Variables [67]): Let X1, . . . , X p be i.i.d. real-valued
random variables. Suppose that there exist some positive
numbers R and σ 2

X such that

E
[|Xk |m

] ≤ m!
2
σ 2

X Rm−2, for all integers m ≥ 2.

Let S
.= 1

p

∑p
k=1 Xk, then for all t > 0, it holds that

P [|S − E [S]| ≥ t] ≤ 2 exp

(

− pt2

2σ 2
X + 2Rt

)

.

Lemma 17 (Moment-Control Bernstein’s Inequality for
Random Vectors [15]): Let x1, . . . , xp ∈ R

d be i.i.d. random
vectors. Suppose there exist some positive number R and σ 2

X
such that

E
[‖xk‖m

2

] ≤ m!
2
σ 2

X Rm−2, for all integers m ≥ 2.

Let s = 1
p

∑p
k=1 xk , then for any t > 0, it holds that

P
[‖s − E [s]‖2 ≥ t

] ≤ 2(d + 1) exp

(

− pt2

2σ 2
X + 2Rt

)

.

Lemma 18 (Gaussian Concentration Inequality): Let x ∼
N (

0, Ip
)
. Let f : R

p �→ R be an L-Lipschitz function. Then
we have for all t > 0 that

P [ f (X)− E f (X) ≥ t] ≤ exp

(
− t2

2L2

)
.

Lemma 19 (Bounding Maximum Norm of Gaussian Vector
Sequence): Let x1, . . . , xn1 be a sequence of (not necessarily
independent) standard Gaussian vectors in R

n2 . It holds that

P

[
max
i∈[n1] ‖xi‖2 >

√
n2 + 2

√
2 log(2n1)

]
≤ (2n1)

−3.

Proof: Since the function ‖·‖2 is 1-Lipschitz, by Gaussian
concentration inequality, for any i ∈ [n1], we have

P

[
‖xi‖2 −

√
E ‖xi‖2

2 > t

]
≤ P

[‖xi‖2 − E ‖xi‖2 > t
]

≤ exp

(
− t2

2

)

for all t > 0. Since E ‖xi‖2
2 = n2, by a simple union bound,

we obtain

P

[
max
i∈[n1] ‖xi‖ > √

n2 + t

]
≤ exp

(
− t2

2
+ log n1

)
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for all t > 0. Taking t = 2
√

2 log(2n1) gives the claimed
result. �

Corollary 20: Let � ∈ R
n1×n2 ∼i.i.d . N (0, 1). It holds that

‖�x‖∞ ≤
(√

n2 + 2
√

2 log(2n1)
)

‖x‖2 for all x ∈ R
n2 ,

with probability at least 1 − (2n1)
−3.

Proof: Let � = [
φ1, · · · ,φn1

]

. Without loss of gener-

ality, let us only consider x ∈ S
n2−1, we have

‖�x‖∞ = max
i∈[n1]

∣
∣∣x
φi

∣
∣∣ ≤ max

i∈[n1]

∥
∥∥φi

∥
∥∥

2
. (A.1)

Invoking Lemma 19 returns the claimed result. �
Lemma 21 (Covering Number of a Unit Sphere [42]): Let

S
n−1 = {x ∈ R

n | ‖x‖2 = 1} be the unit sphere. For any ε ∈
(0, 1), there exists some ε cover of S

n−1 w.r.t. the �2 norm,
denoted as Nε, such that

|Nε| ≤
(

1 + 2

ε

)n

≤
(

3

ε

)n

.

Lemma 22 (Spectrum of Gaussian Matrices [42]): Let � ∈
R

n1×n2 (n1 > n2) contain i.i.d. standard normal entries. Then
for every t ≥ 0, with probability at least 1 − 2 exp

(−t2/2
)
,

one has
√

n1 − √
n2 − t ≤ σmin(�)

≤ σmax(�) ≤ √
n1 + √

n2 + t .
Lemma 23: For any ε ∈ (0, 1), there exists a constant

C (ε) > 1, such that provided n1 > C (ε) n2, the random
matrix � ∈ R

n1×n2 ∼i.i.d . N (0, 1) obeys

(1 − ε)

√
2

π
n1 ‖x‖2 ≤ ‖�x‖1 ≤ (1 + ε)

√
2

π
n1 ‖x‖2 ,

for all x ∈ R
n2 with probability at least 1 − 2 exp (−c (ε) n1)

for some c (ε) > 0.
Geometrically, this lemma roughly corresponds to the

well known almost spherical section theorem [68], [69], see
also [70]. A slight variant of this version has been proved
in [3], borrowing ideas from [71].

Proof: By homogeneity, it is enough to show that the
bounds hold for every x of unit �2 norm. For a fixed x0 with

‖x0‖2 = 1, �x0 ∼ N (0, I). So E ‖�x‖1 =
√

2
π n1. Note

that ‖·‖1 is
√

n1-Lipschitz, by concentration of measure for
Gaussian vectors in Lemma 18, we have

P
[∣∣‖�x‖1 − E

[‖�x‖1
]∣∣ > t

] ≤ 2 exp

(
− t2

2n1

)

for any t > 0. For a fixed δ ∈ (0, 1), Sn2−1 can be covered by
a δ-net Nδ with cardinality #Nδ ≤ (1 + 2/δ)n2 . Now consider
the event

E .=
{

x ∈ Nδ | (1 − δ)

√
2

π
n1 ≤ ‖�x‖1 ≤ (1 + δ)

√
2

π
n1

}

.

A simple application of union bound yields

P
[Ec] ≤ 2 exp

(
−δ

2n1

π
+ n2 log

(
1 + 2

δ

))
.

Choosing δ small enough such that

(1 − 3δ) (1 − δ)−1 ≥ 1 − ε, (1 + δ) (1 − δ)−1 ≤ 1 + ε,

then conditioned on E , we can conclude that

(1 − ε)

√
2

π
n1 ≤ ‖�x‖1 ≤ (1 + ε)

√
2

π
n1 ∀ x ∈ S

n2−1.

Indeed, suppose E holds. Then it can easily be seen that any
z ∈ S

n2−1 can be written as

z =
∞∑

k=0

λkxk, with |λk | ≤ δk, xk ∈ Nδ for all k.

Hence we have

‖�z‖1 =
∥
∥
∥
∥
∥
�

∞∑

k=0

λkxk

∥
∥
∥
∥
∥

1

≤
∞∑

k=0

δk ‖�xk‖1

≤ (1 + δ) (1 − δ)−1

√
2

π
n1.

Similarly,

‖�z‖1 =
∥
∥
∥
∥
∥
�

∞∑

k=0

λkxk

∥
∥
∥
∥
∥

1

≥
[
1 − δ − δ (1 + δ) (1 − δ)−1

]√ 2

π
n1

= (1 − 3δ) (1 − δ)−1

√
2

π
n1.

Hence, the choice of δ above leads to the claimed result.
Finally, given n1 > Cn2, to make the probability P

[Ec
]

decaying in n1, it is enough to set C = 2π
δ2 log

(
1 + 2

δ

)
. This

completes the proof. �

APPENDIX B
THE RANDOM BASIS VS. ITS

ORTHONORMALIZED VERSION

In this appendix, we consider the planted sparse model

Y = [
x0 | g1 | · · · | gn−1

] = [x0 | G] ∈ R
p×n

as defined in (III.5), where

x0(k) ∼i.i.d .
1√
θp

Ber (θ) , 1 ≤ k ≤ p,

g� ∼i.i.d . N
(

0,
1

p
I
)
, 1 ≤ � ≤ n − 1. (B.1)

Recall that one “natural/canonical” orthonormal basis for the
subspace spanned by columns of Y is

Y =
[

x0

‖x0‖2
| Px⊥

0
G
(

G
Px⊥
0

G
)−1/2

]
,

which is well-defined with high probability as Px⊥
0

G is well-
conditioned (proved in Lemma 25). We write

G′ .= Px⊥
0

G
(

G
Px⊥
0

G
)−1/2

(B.2)

for convenience. When p is large, Y has nearly orthonormal
columns, and so we expect that Y closely approximates Y.
In this section, we make this intuition rigorous. We prove
several results that are needed for the proof of Theorem 1, and
for translating results for Y to results for Y in Appendix E-D.
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For any realization of x0, let I = supp(x0) =
{i | x0(i) �= 0}. By Bernstein’s inequality in Lemma 16 with
σ 2

X = 2θ and R = 1, the event

E0
.=
{

1

2
θp ≤ |I| ≤ 2θp

}
(B.3)

holds with probability at least 1 − 2 exp (−θp/16). Moreover,
we show the following:

Lemma 24: When p ≥ Cn and θ > 1/
√

n, the bound

∣∣
∣
∣1 − 1

‖x0‖2

∣∣
∣
∣ ≤ 4

√
2

5

√
n log p

θ2 p
(B.4)

holds with probability at least 1−cp−2. Here C, c are positive
constants.

Proof: Because E
[‖x0‖2

2

] = 1, by Bernstein’s inequality

in Lemma 16 with σ 2
X = 2/(θp2) and R = 1/(θp), we have

P

[∣∣
∣‖x0‖2

2 − E

[
‖x0‖2

2

]∣∣
∣ > t

]
= P

[∣∣
∣‖x0‖2

2 − 1
∣∣
∣ > t

]

≤ 2 exp

(
− θpt2

4 + 2t

)

for all t > 0, which implies

P

[
|‖x0‖2 − 1| > t

‖x0‖2 + 1

]

= P
[|‖x0‖2 − 1| (‖x0‖2 + 1) > t

]

≤ 2 exp

(
− θpt2

4 + 2t

)
.

On the intersection with E0, ‖x0‖2 + 1 ≥ 1√
2

+ 1 ≥ 5/4 and

setting t =
√

n log p
θ2 p

, we obtain

P

[

|‖x0‖2 − 1| ≥ 4

5

√
n log p

θ2 p

∣
∣
∣ E0

]

≤ 2 exp
(
−√np log p

)
.

Unconditionally, this implies that with probability at least 1 −
2 exp (−pθ/16)− 2 exp

(−√
np log p

)
, we have

∣∣
∣
∣1 − 1

‖x0‖2

∣∣
∣
∣ = |1 − ‖x0‖2|

‖x0‖2
≤ 4

√
2

5

√
n log p

θ2 p
,

as desired. �
Let M .=

(
G
Px⊥

0
G
)−1/2

. Then G′ = GM − x0x

0

‖x0‖2
2
GM.

We show the following results hold:
Lemma 25: Provided p ≥ Cn, it holds that

‖M‖ ≤ 2, ‖M − I‖ ≤ 4
√

n

p
+ 4

√
log(2 p)

p

with probability at least 1 − (2 p)−2. Here C is a positive
constant.

Proof: First observe that

‖M‖ =
(
σmin

(
G
Px⊥

0
G
))−1/2 = σ−1

min

(
Px⊥

0
G
)
.

Now suppose B is an orthonormal basis spanning x⊥
0 . Then it

is not hard to see the spectrum of Px⊥
0

G is the same as that

of B
G ∈ R
(p−1)×(n−1); in particular,

σmin

(
Px⊥

0
G
)

= σmin

(
B
G

)
.

Since each entry of G ∼i.i.d . N
(

0, 1
p

)
, and B
 has orthonor-

mal rows, B
G ∼i.i.d . N
(

0, 1
p

)
, we can invoke the spectrum

results for Gaussian matrices in Lemma 22 and obtain that
√

p − 1

p
−
√

n − 1

p
− 2

√
log (2 p)

p
≤ σmin

(
B
G

)

≤ σmax

(
B
G

)
≤
√

p − 1

p
+
√

n − 1

p
+ 2

√
log(2 p)

p

with probability at least 1 − (2 p)−2. Thus, when p ≥ C1n for
some sufficiently large constant C1, by using the results above
we have

‖M‖ = σ−1
min

(
B
G

)

=
(√

p − 1

p
−
√

n − 1

p
− 2

√
log (2 p)

p

)−1

≤ 2,

‖I − M‖
= max (|σmax (M)− 1| , |σmin (M)− 1|)
= max

(∣∣
∣σ−1

min

(
B
G

)
− 1

∣
∣
∣ ,
∣
∣
∣σ−1

max

(
B
G

)
− 1

∣
∣
∣
)

≤ max

⎧
⎨

⎩

(√
p − 1

p
−
√

n − 1

p
− 2

√
log (2 p)

p

)−1

− 1,

1 −
(√

p − 1

p
+
√

n − 1

p
+ 2

√
log(2 p)

p

)−1
⎫
⎬

⎭

= max

{(

1 −
√

p − 1

p
+
√

n − 1

p
+ 2

√
log (2 p)

p

)

×
(√

p − 1

p
−
√

n − 1

p
− 2

√
log (2 p)

p

)−1

,

(√
p − 1

p
− 1 +

√
n − 1

p
+ 2

√
log(2 p)

p

)

×
(√

p − 1

p
+
√

n − 1

p
+ 2

√
log(2 p)

p

)−1
⎫
⎬

⎭

≤ 2

(

1 −
√

p − 1

p
+
√

n − 1

p
+ 2

√
log (2 p)

p

)

≤ 4
√

n

p
+ 4

√
log(2 p)

p
,

with probability at least 1 − (2 p)−2. �
Lemma 26: Let YI be a submatrix of Y whose rows are

indexed by the set I. There exists a constant C > 0, such that
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when p ≥ Cn and 1/2 > θ > 1/
√

n, the following
∥
∥Y

∥
∥
�2→�1 ≤ 3

√
p,

‖YI‖�2→�1 ≤ 7
√

2θp,
∥
∥G − G′∥∥

�2→�1 ≤ 4
√

n + 7
√

log(2 p),

∥
∥YI − YI

∥
∥
�2→�1 ≤ 20

√
n log p

θ
,

∥
∥Y − Y

∥
∥
�2→�1 ≤ 20

√
n log p

θ

hold simultaneously with probability at least 1 − cp−2 for a
positive constant c.

Proof: First of all, we have
∥
∥
∥
∥
∥

x0x

0

‖x0‖2
2

GM

∥
∥
∥
∥
∥
�2→�1

≤ 1

‖x0‖2
2

‖x0‖�2→�1

∥
∥
∥x


0 GM
∥
∥
∥
�2→�2

= 2

‖x0‖2
2

‖x0‖1

∥
∥
∥x


0 G
∥
∥
∥

2
,

where in the last inequality we have applied the fact ‖M‖ ≤ 2
from Lemma 25. Now x


0 G is an i.i.d. Gaussian vectors with

each entry distributed as N
(

0,
‖x0‖2

2
p

)
, where ‖x0‖2

2 = |I|
θp .

So by Gaussian concentration inequality in Lemma 18, we
have

∥
∥∥x


0 G
∥
∥∥

2
≤ 2 ‖x0‖2

√
log(2 p)

p

with probability at least 1 − c1 p−2. On the intersection with
E0, this implies

∥
∥
∥
∥∥

x0x

0

‖x0‖2
2

GM

∥
∥
∥
∥∥
�2→�1

≤ 2
√

2θ log(2 p),

with probability at least 1 − c2 p−2 provided θ > 1/
√

n.
Moreover, when intersected with E0, Lemma 23 implies that
when p ≥ C1n,

‖G‖�2→�1 ≤ √
p, ‖GI‖�2→�1 ≤ √

2θp

with probability at least 1−c3 p−2 provided θ > 1/
√

n. Hence,
by Lemma 25, when p > C2n,

∥∥G − G′∥∥
�2→�1 ≤ ‖G‖�2→�1 ‖I − M‖+

∥
∥∥
∥
∥

x0x

0

‖x0‖2
2

GM

∥
∥∥
∥
∥
�2→�1

≤ √
p

(

4
√

n

p
+ 4

√
log(2 p)

p

)

+ 2
√

2θ log(2 p)

≤ 4
√

n + 7
√

log(2 p),
∥
∥Y

∥
∥
�2→�1 ≤ ‖x0‖�2→�1 + ‖G‖�2→�1

≤ ‖x0‖1 + √
p ≤ 2

√
θp + √

p ≤ 3
√

p,

∥
∥G′

I
∥
∥
�2→�1 ≤ ‖GI‖�2→�1 ‖M‖ +

∥
∥
∥
∥∥

x0x

0

‖x0‖2
2

GM

∥
∥
∥
∥∥
�2→�1

≤ 2
√

2θp + 2
√

2θ log(2 p) ≤ 4
√

2θp,

∥
∥GI−G′

I
∥
∥
�2→�1 ≤ ‖GI‖�2→�1 ‖I−M‖+

∥∥
∥
∥
∥

x0x

0

‖x0‖2
2

GM

∥∥
∥
∥
∥
�2→�1

≤ √
2θp

(

4
√

n

p
+ 4

√
log(2 p)

p

)

+ 2
√

2θ log(2 p) ≤ 4
√

2θn

+ 6
√

2θ log(2 p),

‖YI‖�2→�1 ≤
∥
∥∥
∥

x0

‖x0‖2

∥
∥∥
∥
�2→�1

+ ∥∥G′
I
∥∥
�2→�1

≤ ‖x0‖1

‖x0‖2
+ 6

√
2θp ≤ 7

√
2θp

with probability at least 1 − c4 p−2 provided θ > 1/
√

n.
Finally, by Lemma 24 and the results above, we obtain

∥
∥Y − Y

∥
∥
�2→�1 ≤

∣
∣
∣
∣1 − 1

‖x0‖2

∣
∣
∣
∣ ‖x0‖1 + ∥

∥G − G′∥∥
�2→�1

≤ 20

√
n log p

θ
,

∥
∥YI − YI

∥
∥
�2→�1 ≤

∣
∣
∣
∣1 − 1

‖x0‖2

∣
∣
∣
∣ ‖x0‖1 + ∥

∥GI − G′
I
∥
∥
�2→�1

≤ 20

√
n log p

θ
,

holding with probability at least 1 − c5 p−2. �
Lemma 27: Provided p ≥ Cn and θ > 1/

√
n, the following

∥∥G′∥∥
�2→�∞ ≤ 2

√
n

p
+ 8

√
2 log(2 p)

p
,

∥
∥G − G′∥∥

�2→�∞ ≤ 4n

p
+ 8

√
2 log(2 p)

p
+ 21

√
n log(2 p)

p

hold simultaneously with probability at least 1−cp−2 for some
constant c > 0.

Proof: First of all, we have when p ≥ C1n, it holds with
probability at least 1 − c2 p−2 that
∥
∥∥
∥
∥

x0x

0

‖x0‖2
2

GM

∥
∥∥
∥
∥
�2→�∞

≤ 1

‖x0‖2
2

‖x0‖�2→�∞
∥∥
∥x


0 GM
∥∥
∥
�2→�2

≤ 2

‖x0‖2
2

‖x0‖∞
∥
∥
∥x


0 G
∥
∥
∥

2
,

where at the last inequality we have applied the fact ‖M‖ ≤ 2
from Lemma 25. Moreover, from proof of Lemma 26, we
know that

∥
∥x


0 G
∥
∥

2 ≤ 2
√

log(2 p)/p ‖x0‖2 with probability at
least 1 − c3 p−2 provided p ≥ C4n. Therefore, conditioned on
E0, we obtain that

∥
∥∥
∥
∥

x0x

0

‖x0‖2
2

GM

∥
∥∥
∥
∥
�2→�∞

≤ 4 ‖x0‖∞
‖x0‖2

√
log(2 p)

p

≤ 4
√

2 log(2 p)√
θ p

holds with probability at least 1 − c5 p−2 provided θ > 1/
√

n.
Now by Corollary 20, we have that

‖G‖�2→�∞ ≤
√

n

p
+ 2

√
2 log(2 p)

p
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with probability at least 1 − c6 p−2. Combining the above
estimates and Lemma 25, we have that with probability at
least 1 − c7 p−2

∥
∥G′∥∥

�2→�∞ ≤ ‖GM‖�2→�∞ +
∥
∥
∥
∥
∥

x0x

0

‖x0‖2
2

GM

∥
∥
∥
∥
∥
�2→�∞

≤ ‖G‖�2→�∞ ‖M‖ +
∥
∥
∥
∥∥

x0x

0

‖x0‖2
2

GM

∥
∥
∥
∥∥
�2→�∞

≤ 2
√

n

p
+ 4

√
2 log(2 p)

p
+ 4

√
2 log(2 p)√
θ p

≤ 2
√

n

p
+ 8

√
2 log(2 p)

p
,

where the last simplification is provided that θ > 1/
√

n and
p ≥ C8n for a sufficiently large C8. Similarly,

∥
∥G − G′∥∥

�2→�∞

≤ ‖G‖�2→�∞ ‖I − M‖ +
∥
∥
∥∥
∥

x0x

0

‖x0‖2
2

GM

∥
∥
∥∥
∥
�2→�∞

≤ 4n

p
+ 8

√
2 log(2 p)

p
+ (8

√
2 + 4)

√
n log(2 p)

p

+4
√

2 log(2 p)√
θ p

≤ 4n

p
+ 8

√
2 log(2 p)

p
+ 21

√
n log(2 p)

p
,

completing the proof. �

APPENDIX C
PROOF OF �1/�2 GLOBAL OPTIMALITY

In this appendix, we prove the �1/�2 global optimality
condition in Theorem 1 of Section II.

Proof of Theorem 1: We will first analyze a canonical
version, in which the input orthonormal basis is Y as defined
in (III.6) of Section III:

min
q∈Rn

‖Yq‖1 , s.t. ‖q‖2 = 1.

Let q =
[

q1
q2

]
and let I be the support set of x0, we have

‖Yq‖1 = ‖YIq‖1 + ‖YIc q‖1

≥ |q1|
∥
∥
∥
∥

x0

‖x0‖2

∥
∥
∥
∥

1
− ∥
∥G′

Iq2
∥
∥

1 + ∥
∥G′

Icq2
∥
∥

1

≥ |q1|
∥
∥∥
∥

x0

‖x0‖2

∥
∥∥
∥

1
− ‖GIq2‖1 − ∥∥(GI − G′

I
)

q2
∥∥

1

+ ‖GIc q2‖1 − ∥
∥(GIc − G′

Ic

)
q2
∥
∥

1

≥ |q1|
∥
∥∥
∥

x0

‖x0‖2

∥
∥∥
∥

1
− ‖GIq2‖1 + ‖GIcq2‖1

− ∥
∥G − G′∥∥

�2→�1 ‖q2‖2 ,

where G and G′ are defined in (B.1) and (B.2) of Appendix B.
By Lemma 23 and intersecting with E0 defined in (B.3), as

long as p ≥ C1n, we have

‖GIq2‖1 ≤ 2θp√
p

‖q2‖2 = 2θ
√

p ‖q2‖2 ,

‖GIcq2‖1 ≥ 1

2

p − 2θp√
p

‖q2‖2 = 1

2

√
p (1 − 2θ) ‖q2‖2

for all q2 ∈ R
n−1 with probability at least 1 − c2 p−2.

Moreover, by Lemma 26,
∥
∥G − G′∥∥

�2→�1 ≤ 4
√

n + 7
√

log(2 p)

hold with probability at least 1 − c3 p−2 when p ≥ C4n and
θ > 1/

√
n. So we obtain that

‖Yq‖1 ≥ g(q) .= |q1|
∥
∥∥
∥

x0

‖x0‖2

∥
∥∥
∥

1

+ ‖q2‖2

(
1

2
√

p (1 − 2θ)− 2θ
√

p − 4
√

n − 7
√

log(2 p)

)

holds with probability at least 1 − c5 p−2. Assuming E0, we
observe

∥∥
∥
∥

x0

‖x0‖2

∥∥
∥
∥

1
≤ √|I|

∥∥
∥
∥

x0

‖x0‖2

∥∥
∥
∥

2
≤ √

2θp.

Now g(q) is a linear function in |q1| and ‖q2‖2. Thus,
whenever θ is sufficiently small and p ≥ C6n such that

√
2θp <

1

2

√
p (1 − 2θ)− 2θ

√
p − 4

√
n − 7

√
log(2 p),

±e1 are the unique minimizers of g(q) under the constraint
q2

1 + ‖q2‖2
2 = 1. In this case, because ‖Y(±e1)‖1 = g(±e1),

and we have

‖Yq‖1 ≥ g(q) > g(±e1)

for all q �= ±e1, ±e1 are the unique minimizers of ‖Yq‖1
under the spherical constraint. Thus there exists a universal
constant θ0 > 0, such that for all 1/

√
n ≤ θ ≤ θ0, ±e1 are

the only global minimizers of (II.2) if the input basis is Y.
Any other input basis can be written as Ŷ = YU, for some

orthogonal matrix U. The program now is written as

min
q∈Rn

∥
∥Ŷq

∥
∥

1, s.t. ‖q‖2 = 1,

which is equivalent to

min
q∈Rn

∥
∥Ŷq

∥
∥

1, s.t. ‖Uq‖2 = 1,

which is obviously equivalent to the canonical program we
analyzed above by a simple change of variable, i.e., q

.= Uq,
completing the proof. �

APPENDIX D
GOOD INITIALIZATION

In this appendix, we prove Proposition 4. We show that
the initializations produced by the procedure described in
Section III are biased towards the optimal.

Proof of Proposition 4: Our previous calculation has shown
that θp/2 ≤ |I| ≤ 2θp with probability at least 1 − c1 p−2
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provided p ≥ C2n and θ > 1/
√

n. Let Y = [
y1, · · · , yp

]

as

defined in (III.6). Consider any i ∈ I. Then x0(i) = 1√
θp

, and

〈
e1, yi/

∥
∥
∥yi

∥
∥
∥

2

〉
= 1/

√
θp

‖x0‖2

∥
∥yi

∥
∥

2

≥ 1/
√
θp

‖x0‖2
(‖x0‖∞ / ‖x0‖2 + ∥

∥(g′)i
∥
∥

2

)

≥ 1/
√
θp

‖x0‖2
(‖x0‖∞ / ‖x0‖2 + ∥

∥gi
∥
∥

2 + ‖G − G′‖�2→�∞
) ,

where gi and (g′)i are the i -th rows of G and G′, respectively.
Since such gi ’s are independent Gaussian vectors in R

n−1

distributed as N (0, 1/p), by Gaussian concentration inequality
and the fact that |I| ≥ pθ/2 w.h.p.,

P

[
∃i ∈ I :

∥∥
∥gi

∥∥
∥

2
≤ 2

√
n/p

]
≥ 1 − exp (−c3nθp) ≤ c4 p−2,

provided p ≥ C5n and θ > 1/
√

n. Moreover,

‖x0‖2 =
√

|I| × 1

θp
≤
√

2θp × 1

θp
= √

2.

Combining the above estimates and result of Lemma 27, we
obtain that provided p ≥ C6n and θ > 1/

√
n, with probability

at least 1 − c7 p−2, there exists an i ∈ [p], such that if we set
q(0) = yi/

∥∥yi
∥∥

2, it holds that

∣
∣
∣q(0)1

∣
∣
∣ ≥ 1√

θp

[√
2

(
4n

p
+ 8

√
2

log(2 p)

p
+ 21

√
n log(2 p)

p

)

+ 1√
θp

+ 2

√
2n

p

]−1

≥ 1/
√
θp

1/
√
θp + 6

√
2
√

n/p
(using p ≥ C6n)

= 1

1 + 6
√

2
√
θn

≥ 1

(1 + 6
√

2)
√
θn

(as θ > 1/
√

n)

≥ 1

10
√
θn
,

completing the proof. �
We will next show that for an arbitrary orthonormal basis

Ŷ .= YU the initialization still biases towards the target
solution. To see this, suppose w.l.o.g.

(
yi
)


is a row of Y with
nonzero first coordinate. We have shown above that with high
probability

∣
∣
∣
〈

yi

‖yi‖2
, e1

〉∣∣
∣ ≥ 1

10
√
θn

if Y is the input orthonormal

basis. For Y, as x0 = Ye1 = YUU
e1, we know q� = U
e1
is the target solution corresponding to Ŷ. Observing that

∣∣
∣
∣
∣
∣∣

〈

U
e1,

(
e


i Ŷ
)


∥
∥
∥
(
e


i Ŷ
)
∥∥
∥

2

〉
∣∣
∣
∣
∣
∣∣
=
∣
∣
∣
∣
∣

〈

U
e1,
U
Y
ei∥

∥U
Y
ei
∥
∥

2

〉∣∣
∣
∣
∣

=
∣
∣∣
∣
∣

〈

e1,
(Y)
 ei∥
∥Y
ei

∥
∥

2

〉∣∣∣
∣
∣

=
∣
∣
∣
∣
∣

〈

e1,
yi

∥
∥yi

∥
∥

2

〉∣∣
∣
∣
∣
≥ 1

10
√

nθ
,

corroborating our claim.

APPENDIX E
LOWER BOUNDING FINITE SAMPLE GAP G(q)

In this appendix, we prove Proposition 5. In particular, we
show that the gap G(q) defined in (IV.8) is strictly positive
over a large portion of the sphere S

n−1. Proof of Proposition 5:
Without loss of generality, we work with the “canonical”
orthonormal basis Y defined in (III.6). Recall that Y is the
orthogonalization of the planted sparse basis Y as defined
in (III.5). We define the processes Q(q) and Q(q) on q ∈ S

n−1,
via

Q(q) = 1

p

p∑

i=1

yi Sλ
[
q
yi

]
,

Q(q) = 1

p

p∑

i=1

yi Sλ
[
q
yi

]
.

Thus, we can separate Q(q) as Q(q) =
[

Q1(q)
Q2(q)

]
, where

Q1(q) = 1

p

p∑

i=1

x0i Sλ
[
q
yi

]

Q2(q) = 1

p

p∑

i=1

gi Sλ
[
q
yi

]
, (E.1)

and separate Q(q) correspondingly. Our task is to lower bound
the gap G(q) for finite samples as defined in (IV.8). Since
we can deterministically constrain |q1| and ‖q2‖2 over the
set � as defined in (IV.7) (e.g., 1

10
√

nθ
≤ |q1| ≤ 3

√
θ and

‖q2‖2 ≥ 1
10 , where the choice of 1

10 for q2 is arbitrary here, as
we can always take a sufficiently small θ ), the challenge lies
in lower bounding |Q1 (q)| and upper bounding ‖Q2 (q)‖2,
which depend on the orthonormal basis Y. The unnormalized
basis Y is much easier to work with than Y. Our proof will
follow the observation that

|Q1 (q)| ≥ ∣
∣E
[
Q1 (q)

]∣∣− ∣
∣Q1 (q)− E

[
Q1 (q)

]∣∣

− ∣
∣Q1 (q)− Q1 (q)

∣
∣ ,

‖Q2 (q)‖ ≤ ∥∥E
[
Q2 (q)

]∥∥
2 + ∥∥Q2 (q)− E

[
Q2 (q)

]∥∥
2

+ ∥
∥Q2 (q)− Q2 (q)

∥
∥

2 .

In particular, we show the following:

• Appendix E-A shows that the expected gap is lower
bounded for all q ∈ S

n−1 with |q1| ≤ 3
√
θ :

G (q)
.=
∣∣E
[
Q1 (q)

]∣∣

|q1| −
∥
∥E

[
Q2 (q)

]∥∥
2

‖q2‖2
≥ 1

50

q2
1

θp
.

As |q1| ≥ 1
10

√
nθ

, we have

inf
q∈�

∣
∣E
[
Q1 (q)

]∣∣

|q1| −
∥
∥E

[
Q2 (q)

]∥∥
2

‖q2‖2
≥ 1

5000

1

θ2np
.

• Appendix E-B, as summarized in Proposition 35, shows
that whenever p ≥ �

(
n4 log n

)
, it holds with high
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probability that

sup
q∈�

∣
∣Q1 (q)− E

[
Q1 (q)

]∣∣

|q1| +
∥
∥Q2 (q)− E

[
Q2 (q)

]∥∥
2

‖q2‖2

≤ 10
√
θn

4 × 105θ5/2n3/2 p
+ 10

4 × 105θ2np
= 1

2 × 104θ2np
.

• Appendix E-D shows that whenever p ≥ �
(
n4 log n

)
, it

holds with high probability that

sup
q∈�

∣
∣Q1 (q)− Q1 (q)

∣
∣

|q1| +
∥
∥Q2 (q)− Q2 (q)

∥
∥

2

‖q2‖2

≤ 10
√
θn

4 × 105θ5/2n3/2 p
+ 10

4 × 105θ2np
= 1

2 × 104θ2np
.

Observing that

inf
q∈� G(q)

≥ inf
q∈�

(∣
∣E
[
Q1 (q)

]∣∣

|q1| −
∥
∥E

[
Q2 (q)

]∥∥
2∥∥q2

∥∥
2

)

− sup
q∈�

(∣
∣Q1 (q)−E

[
Q1 (q)

]∣∣

|q1| +
∥
∥Q2 (q)−E

[
Q2 (q)

]∥∥
2

‖q2‖2

)

− sup
q∈�

(∣
∣Q1 (q)− Q1 (q)

∣
∣

|q1| +
∥
∥Q2 (q)− Q2 (q)

∥
∥

2

‖q2‖2

)

,

we obtain the result as desired. �
For the general case when the input orthonormal basis is

Ŷ = YU with target solution q� = U
e1, a straightforward
extension of the definition for the gap would be:

G
(
q; Ŷ = YU

) .=
∣
∣〈Q

(
q; Ŷ

)
,U
e1

〉∣∣
∣
∣〈q,U
e1

〉∣∣

−
∥
∥(I − U
e1e


1 U
)

Q
(
q; Ŷ

)∥∥
2∥

∥(I − U
e1e

1 U

)
q
∥
∥

2

.

Since Q
(
q; Ŷ

) = 1
p

∑p
k=1 U
yk Sλ

(
q
U
yk

)
, we have

UQ
(
q; Ŷ

) = 1

p

p∑

k=1

UU
yk Sλ
(

q
U
yk
)

= 1

p

p∑

k=1

yk Sλ
[
(Uq)
 yk

]

= Q (Uq; Y) . (E.2)

Hence we have

G
(
q; Ŷ = YU

) = |〈Q (Uq; Y) , e1〉|
|〈Uq, e1〉|

−
∥
∥(I − e1e


1

)
Q (Uq; Y)

∥
∥

2∥∥(I − e1e

1

)
Uq

∥∥
2

.

Therefore, from Proposition 5 above, we conclude that under
the same technical conditions as therein,

inf
q∈Sn−1: 1

10
√
θn

≤|〈Uq,e1〉|≤3
√
θ

G
(
q; Ŷ

) ≥ 1

104θ2np

with high probability.

A. Lower Bounding the Expected Gap G(q)

In this section, we provide a nontrivial lower bound for the
gap

G(q) =
∣
∣E
[
Q1(q)

]∣∣

|q1| −
∥
∥E

[
Q2(q)

]∥∥
2

‖q2‖2
. (E.3)

More specifically, we show that:
Proposition 28: There exists some numerical constant

θ0 > 0, such that for all θ ∈ (0, θ0), it holds that

G(q) ≥ 1

50

q2
1

θp
(E.4)

for all q ∈ S
n−1 with |q1| ≤ 3

√
θ .

Estimating the gap G(q) requires delicate estimates for
E
[
Q1(q)

]
and E

[
Q2(q)

]
. We first outline the main proof in

Appendix E-A1, and delay these detailed technical calculations
to the subsequent subsections.

1) Sketch of the Proof: W.l.o.g., we only consider the
situation that q1 > 0, because the case of q1 < 0 can be
similarly shown by symmetry. By (E.1), we have

E
[
Q1(q)

] = E

[
x0Sλ

[
x0q1 + q


2 g
]]
,

E
[
Q2(q)

] = E

[
gSλ

[
x0q1 + q


2 g
]]
,

where g ∼ N
(

0, 1
p I
)

, and x0 ∼ 1√
θp

Ber(θ). Let us decom-
pose

g = g‖ + g⊥,

with g‖ = P‖g = q2q

2

‖q2‖2
2
g, and g⊥ = (I−P‖)g. In this notation,

we have

E
[
Q2(q)

] = E

[
g‖Sλ

[
x0q1 + q


2 g‖
]]

+ E

[
g⊥Sλ

[
x0q1 + q


2 g‖
]]

= E

[
g‖Sλ

[
x0q1 + q


2 g
]]

+ E
[
g⊥
]
E

[
Sλ
[
x0q1 + q


2 g
]]

= q2

‖q2‖2
2

E

[
q


2 gSλ
[
x0q1 + q


2 g
]]
,

where we used the facts that q

2 g = q


2 g‖, g⊥ and g‖ are
uncorrelated Gaussian vectors and therefore independent, and
E
[
g⊥
] = 0. Let Z

.= g
q2 ∼ N (0, σ 2) with σ 2 = ‖q2‖2
2 /p,

by partial evaluation of the expectations with respect to x0,
we get

E
[
Q1(q)

] =
√
θ

p
E

[
Sλ

[
q1√
θp

+ Z

]]
, (E.5)

E
[
Q2(q)

] = θq2

‖q2‖2
2

E

[
Z Sλ

[
q1√
θp

+ Z

]]

+ (1 − θ)q2

‖q2‖2
2

E [Z Sλ [Z ]] . (E.6)
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Straightforward integration based on Lemma 10 gives a
explicit form of the expectations as follows

E
[
Q1(q)

] =
√
θ

p

{[
α�

(
−α
σ

)
+ β�

(
β

σ

)]

+ σ
[
ψ

(
−β
σ

)
− ψ

(
−α
σ

)]}
(E.7)

E
[
Q2(q)

] = q2

{
2 (1 − θ)

p
�

(
− λ

σ

)

+ θ
p

[
�
(
−α
σ

)
+�

(
β

σ

)]}
(E.8)

where the scalars α and β are defined as

α = q1√
θp

+ λ, β = q1√
θp

− λ,

and ψ (t) and � (t) are pdf and cdf for standard normal
distribution, respectively, as defined in Lemma 10. Plugging
(E.7) and (E.7) into (E.3), by some simplifications, we obtain

G(q)

= 1

q1

√
θ

p

[
α�

(
−α
σ

)
+ β�

(
β

σ

)
− 2q1√

θp
�

(
− λ

σ

)]

− θ

p

[
�
(
−α
σ

)
+�

(
β

σ

)
− 2�

(
− λ

σ

)]

+ σ

q1

√
θ

p

[
ψ

(
β

σ

)
− ψ

(
−α
σ

)]
. (E.9)

With λ = 1/
√

p and σ 2 = ‖q2‖2
2 /p = (1 − q2

1 )/p, we have

−α
σ

= − δ + 1
√

1 − q2
1

,
β

σ
= δ − 1
√

1 − q2
1

,
λ

σ
= 1
√

1 − q2
1

,

where δ = q1/
√
θ for q1 ≤ 3

√
θ . To proceed, it is natural to

consider estimating the gap G(q) by Taylor’s expansion. More
specifically, we approximate �

(− α
σ

)
and ψ

(− α
σ

)
around

−1 − δ, and approximate �
(
β
σ

)
and ψ

(
β
σ

)
around −1 + δ.

Applying the estimates for the relevant quantities established
in Lemma 29, we obtain

G(q) ≥ 1 − θ

p
�1(δ)− 1

δp
�2(δ)+ 1 − θ

p
ψ(−1)q2

1

+ 1

p

(
σ
√

p + θ

2
− 1

)
η2(δ)q

2
1

+ 1

2δp

[
1 + δ2 − θδ2 − σ

(
1 + δ2

)√
p
]

q2
1η1 (δ)

+ σ

δ
√

p
η1 (δ)− 5CT

√
θq3

1

p
(δ + 1)3,

where we define

�1(δ) = �(−1 − δ)+�(−1 + δ)− 2�(−1),

�2(δ) = �(−1 + δ)−�(−1 − δ),

η1(δ) = ψ(−1 + δ)− ψ(−1 − δ),

η2(δ) = ψ(−1 + δ)+ ψ(−1 − δ),

and CT is as defined in Lemma 29. Since 1 − σ
√

p ≥ 0,

dropping those small positive terms
q2

1
p (1 − θ)ψ(−1),

θq2
1

2p η2(δ), and
(
1 + δ2

) (
1 − σ

√
p
)

q2
1η1 (δ) / (2δp), and using

the fact that δ = q1/
√
θ , we obtain

G(q) ≥ 1 − θ

p
�1(δ)− 1

δp

[
�2(δ)− σ

√
pη1(δ)

]

−q2
1

p

(
1 − σ

√
p
)
η2(δ)−

√
θ

2 p
q3

1η1 (δ)

−C1
√
θq3

1

p
max

(
q3

1

θ3/2 , 1

)

≥ 1 − θ

p
�1(δ)− 1

δp
[�2(δ)− η1(δ)]

−q2
1

p

η1 (δ)

δ
− q2

1

θp

(
2θ√
2π

+ 3θ2

2
√

2π
+ C1θ

2
)
,

for some constant C1 > 0, where we have used q1 ≤ 3
√
θ

to simplify the bounds and the fact σ
√

p =
√

1 − q2
1 ≥ 1 −

q2
1 to simplify the expression. Substituting the estimates in

Lemma 31 and use the fact δ �→ η1 (δ) /δ is bounded, we
obtain

G (p) ≥ 1

p

(
1

40
− 1√

2π
θ

)
δ2 − q2

1

θp

(
c1θ + c2θ

2
)

≥ q2
1

θp

(
1

40
− 1√

2π
θ − c1θ − c2θ

2
)

for some positive constants c1 and c2. We obtain the claimed
result once θ0 is made sufficiently small.

2) Auxiliary Results Used in the Proof:
Lemma 29: Let δ

.= q1/
√
θ . There exists some universal

constant CT > 0 such that we have the follow polynomial
approximations hold for all q1 ∈ (

0, 1
2

)
:

∣
∣
∣∣ψ

(
−α
σ

)
−
[

1 − 1

2
(1 + δ)2q2

1

]
ψ(−1 − δ)

∣
∣
∣∣

≤ CT (1 + δ)2 q4
1 ,∣

∣
∣∣ψ

(
β

σ

)
−
[

1 − 1

2
(δ − 1)2q2

1

]
ψ(δ − 1)

∣
∣
∣∣

≤ CT (δ − 1)2 q4
1 ,∣

∣∣
∣�

(
−α
σ

)
−
[
�(−1 − δ)− 1

2
ψ(−1 − δ)(1 + δ)q2

1

]∣∣∣
∣

≤ CT (1 + δ)2 q4
1 ,∣∣

∣
∣�

(
β

σ

)
−
[
�(δ − 1)+ 1

2
ψ(δ − 1)(δ − 1)q2

1

]∣∣
∣
∣

≤ CT (δ − 1)2 q4
1 ,∣∣

∣
∣�

(
− λ

σ

)
−
[
�(−1)− 1

2
ψ(−1)q2

1

]∣∣
∣
∣ ≤ CT q4

1 .

Proof: First observe that for any q1 ∈ (
0, 1

2

)
it holds that

0 ≤ 1
√

1 − q2
1

−
(

1 + q2
1

2

)

≤ q4
1 .

Thus, we have

−(1 + δ)

(
1 + 1

2
q2

1 + q4
1

)
≤ −α

σ
≤ −(1 + δ)

(
1 + 1

2
q2

1

)
,
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when δ ≥ 1, we have

(δ − 1)

(
1 + 1

2
q2

1

)
≤ β

σ
≤ (δ − 1)

(
1 + 1

2
q2

1 + q4
1

)
,

when δ ≤ 1, we have

(δ − 1)

(
1 + 1

2
q2

1 + q4
1

)
≤ β

σ
≤ (δ − 1)

(
1 + 1

2
q2

1

)
.

So we obtain

ψ

(
−(1 + δ)

(
1 + 1

2
q2

1 + q4
1

))
≤ ψ

(
−α
σ

)

≤ ψ

(
−(1 + δ)

(
1 + 1

2
q2

1

))
.

By Taylor expansion of the left and right sides of the above
two-side inequality around −1−δ using Lemma 11, we obtain
∣
∣
∣
∣ψ

(
−α
σ

)
− ψ(−1 − δ)− 1

2
(1 + δ)2q2

1ψ(−1 − δ)

∣
∣
∣
∣

≤ CT (1 + δ)2 q4
1 ,

for some numerical constant CT > 0 sufficiently large. In the
same way, we can obtain other claimed results. �

Lemma 30: For any δ ∈ [0, 3], it holds that

�2(δ)− η1(δ) ≥ η1 (3)

9
δ3 ≥ 1

20
δ3. (E.10)

Proof: Let us define

h(δ) = �2(δ)− η1(δ)− Cδ3

for some C > 0 to be determined later. Then it is obvious that
h(0) = 0. Direct calculation shows that

d

dδ
�1(δ) = η1(δ),

d

dδ
�2(δ) = η2(δ),

d

dδ
η1(δ) = η2(δ)− δη1(δ). (E.11)

Thus, to show (E.10), it is sufficient to show that h′(δ) ≥ 0
for all δ ∈ [0, 3]. By differentiating h(δ) with respect to δ and
use the results in (E.11), it is sufficient to have

h′(δ) = δη1(δ)− 3Cδ2 ≥ 0 ⇐⇒ η1(δ) ≥ 3Cδ

for all δ ∈ [0, 3]. We obtain the claimed result by observing
that δ �→ η1 (δ) /3δ is monotonically decreasing over δ ∈
[0, 3] as justified below.

Consider the function

p (δ)
.= η1 (δ)

3δ
= 1

3
√

2π
exp

(
−δ

2 + 1

2

)
eδ − e−δ

δ
.

To show it is monotonically decreasing, it is enough to show
p′ (δ) is always nonpositive for δ ∈ (0, 3), or equivalently

g (δ)
.= (

eδ + e−δ) δ −
(
δ2 + 1

) (
eδ − e−δ) ≤ 0

for all δ ∈ (0, 3), which can be easily verified by noticing that
g (0) = 0 and g′ (δ) ≤ 0 for all δ ≥ 0. �

Lemma 31: For any δ ∈ [0, 3], we have

(1 − θ)�1(δ)− 1

δ
[�2(δ)− η1(δ)] ≥

(
1

40
− 1√

2π
θ

)
δ2.

(E.12)

Proof: Let us define

g(δ) = (1 − θ)�1(δ)− 1

δ
[�2(δ)− η1(δ)] − c0 (θ) δ

2,

where c0 (θ) > 0 is a function of θ . Thus, by the results
in (E.11) and L’Hospital’s rule, we have

lim
δ→0

�2(δ)

δ
= lim

δ→0
η2 (δ) = 2ψ(−1),

lim
δ→0

η1(δ)

δ
= lim

δ→0
[η2(δ)− δη1(δ)] = 2ψ(−1).

Combined that with the fact that �1(0) = 0, we conclude
g (0) = 0. Hence, to show (E.12), it is sufficient to show that
g′(δ) ≥ 0 for all δ ∈ [0, 3]. Direct calculation using the results
in (E.11) shows that

g′(δ) = 1

δ2 [�2(δ)− η1(δ)] − θη1(δ)− 2c0 (θ) δ.

Since η1 (δ) /δ is monotonically decreasing as shown in
Lemma 30, we have that for all δ ∈ (0, 3)

η1 (δ) ≤ δ lim
δ→0

η (δ)

δ
≤ 2√

2π
δ.

Using the above bound and the main result from Lemma 30
again, we obtain

g′(δ) ≥ 1

20
δ − 2√

2π
θδ − 2c0δ.

Choosing c0 (θ) = 1
40 − 1√

2π
θ completes the proof. �

B. Finite Sample Concentration

In the following two subsections, we estimate the devia-
tions around the expectations E

[
Q1(q)

]
and E

[
Q2(q)

]
, i.e.,∣∣Q1(q)− E

[
Q1(q)

]∣∣ and
∥∥Q2(q)− E

[
Q2(q)

]∥∥
2, and show

that the total deviations fit into the gap G(q) we derived in
Appendix E-A. Our analysis is based on the scalar and vector
Bernstein’s inequalities with moment conditions. Finally, in
Appendix E-C, we uniformize the bound by applying the
classical discretization argument.

1) Concentration for Q1(q):
Lemma 32 (Bounding

∣
∣Q1(q)− E

[
Q1(q)

]∣∣): For each
q ∈ S

n−1, it holds for all t > 0 that

P
[∣∣Q1(q)− E

[
Q1(q)

]∣∣ ≥ t
] ≤ 2 exp

(
− θp3t2

8 + 4 pt

)
.

Proof: By (E.1), we know that

Q1(q) = 1

p

p∑

k=1

X1
k , X1

k = x0(k)Sλ [x0(k)q1 + Zk]
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where Zk = q

2 gk ∼ N

(
0,

‖q2‖2
2

p

)
. Thus, for any m ≥ 2, by

Lemma 13, we have

E

[∣∣
∣X1

k

∣
∣
∣
m]

≤ θ

(
1√
θp

)m

E

[∣∣∣
∣

q1√
θp

+ Zk

∣
∣∣
∣

m]

= θ

(
1√
θp

)m m∑

l=0

(
m

l

)(
q1√
θp

)l

E

[
|Zk|m−l

]

= θ

(
1√
θp

)m m∑

l=0

(
m

l

)(
q1√
θp

)l

(m−l−1)!!
(‖q2‖2√

p

)m−l

≤ m!
2
θ

(
1√
θp

)m ( q1√
θp

+ ‖q2‖2√
p

)m

≤ m!
2
θ

(
2

θp

)m

= m!
2

4

θp2

(
2

θp

)m−2

let σ 2
X = 4/(θp2) and R = 2/(θp), apply Lemma 16, we get

P
[∣∣Q1(q)− E

[
Q1(q)

]∣∣ ≥ t
] ≤ 2 exp

(
− θp3t2

8 + 4 pt

)
.

as desired. �
2) Concentration for Q2(q):
Lemma 33 (Bounding

∥
∥Q2(q)− E

[
Q2(q)

]∥∥
2): For each

q ∈ S
n−1, it holds for all t > 0 that

P
[∥∥Q2(q)− E

[
Q2(q)

]∥∥
2 > t

]

≤ 2(n + 1) exp

(
− θp3t2

128n + 16
√
θn pt

)
.

Before proving Lemma 33, we record the following useful
results.

Lemma 34: For any positive integer s, l > 0, we have

E

[∥∥
∥gk

∥∥
∥

s

2

∣∣
∣q


2 gk
∣∣
∣
l
]

≤ (l + s)!!
2

‖q2‖l
2

(
2
√

n
)s

(√
p
)s+l

.

In particular, when s = l, we have

E

[∥
∥
∥gk

∥
∥
∥

l

2

∣
∣
∣q


2 gk
∣
∣
∣
l
]

≤ l!
2

‖q2‖l
2

(
4
√

n

p

)l

Proof: Let Pq‖
2

= q2q

2

‖q2‖2
2

and Pq⊥
2

=
(

I − 1
‖q2‖2

2
q2q


2

)

denote the projection operators onto q2 and its orthogonal
complement, respectively. By Lemma 13, we have

E

[∥
∥
∥gk

∥
∥
∥

s

2

∣
∣
∣q


2 gk
∣
∣
∣
l
]

≤ E

[(∥∥
∥Pq‖

2
gk
∥∥
∥

2
+
∥∥
∥Pq⊥

2
gk
∥∥
∥

2

)s ∣∣
∣q


2 gk
∣∣
∣
l
]

=
s∑

i=0

(
s

i

)
E

[∥
∥
∥Pq⊥

2
gk
∥
∥
∥

i

2

]
E

[∣
∣
∣q


2 gk
∣
∣
∣
l ∥∥
∥Pq‖

2
gk
∥
∥
∥

s−i

2

]

=
s∑

i=0

(
s

i

)
E

[∥
∥
∥Pq⊥

2
gk
∥
∥
∥

i

2

]
E

[∣
∣
∣q


2 gk
∣
∣
∣
l+s−i

]
1

‖q2‖s−i
2

≤ ‖q2‖l
2

s∑

i=0

(
s

i

)
E

[∥
∥∥Pq⊥

2
gk
∥
∥∥

i

2

](
1√
p

)l+s−i

(l+s−i −1)!!.

Using Lemma 14 and the fact that
∥
∥∥Pq⊥

2
gk
∥
∥∥

2
≤ ∥∥gk

∥∥
2, we

obtain

E

[∥
∥
∥gk

∥
∥
∥

s

2

∣
∣
∣q


2 gk
∣
∣
∣
l
]

≤ ‖q2‖l
2

s∑

i=0

(
s

i

)(√
n√
p

)i

i !!
(

1√
p

)l+s−i

(l + s − i − 1)!!

≤ ‖q2‖l
2

(
1√
p

)l (l + s)!!
2

(√
n√
p

+ 1√
p

)s

≤ (l + s)!!
2

‖q2‖l
2

(
2
√

n
)s

(√
p
)s+l

.

�
Now, we are ready to prove Lemma 33,

Proof: By (E.1), note that

Q2 = 1

p

p∑

k=1

X2
k , X2

k = gkSλ [x0(k)q1 + Zk]

where Zk = q

2 gk . Thus, for any m ≥ 2, by Lemma 34, we

have

E

[∥∥
∥X2

k

∥
∥
∥

m

2

]

≤ θE

[∥
∥
∥gk

∥
∥
∥

m

2

∣
∣
∣
∣

q1√
θp

+ q

2 gk

∣
∣
∣
∣

m]

+ (1 − θ)E
[∥∥
∥gk

∥
∥
∥

m

2

∣
∣
∣q


2 gk
∣
∣
∣
m]

≤ θ

m∑

l=0

(
m

l

)
E

[∣
∣
∣q


2 gk
∣
∣
∣
l ∥∥
∥gk

∥
∥
∥

m

2

] ∣∣
∣∣

q1√
θp

∣
∣
∣∣

m−l

+ (1 − θ)E
[∥∥
∥gk

∥∥
∥

m

2

∣∣
∣q


2 gk
∣∣
∣
m]

≤ θ

(
2
√

n√
p

)m m∑

l=0

(
m

l

)
(m + l)!!

2

(‖q2‖2√
p

)l ∣∣
∣
∣

q1√
θp

∣
∣
∣
∣

m−l

+ (1 − θ)
m!
2

‖q2‖m
2

(
4
√

n

p

)m

≤ θ
m!
2

(
4
√

n√
p

)m (‖q2‖2√
p

+ q1√
θp

)m

+ (1 − θ)
m!
2

‖q2‖m
2

(
4
√

n

p

)m

≤ m!
2

(
8
√

n√
θ p

)m

.

Taking σ 2
X = 64n/(θp2) and R = 8

√
n/(

√
θ p) and using

vector Bernstein’s inequality in Lemma 17, we obtain

P
[∥∥Q2(q)− E

[
Q2(q)

]∥∥
2 ≥ t

]

≤ 2(n + 1) exp

(
− θp3t2

128n + 16
√
θn pt

)
,

as desired. �

C. Union Bound

Proposition 35 (Uniformizing the Bounds): Suppose that
θ > 1/

√
n. Given any ξ > 0, there exists some constant
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C (ξ), such that whenever p ≥ C (ξ) n4 log n, we have

∣
∣Q1(q)− E

[
Q1(q)

]∣∣ ≤ 2ξ

θ5/2n3/2 p
,

∥∥Q2(q)− E
[
Q2(q)

]∥∥
2 ≤ 2ξ

θ2np

hold uniformly for all q ∈ S
n−1, with probability at least

1 − c(ξ)p−2 for a positive constant c(ξ).
Proof: We apply the standard covering argument. For any

ε ∈ (0, 1), by Lemma 21, the unit hemisphere of interest can
be covered by an ε-net Nε of cardinality at most (3/ε)n . For
any q ∈ S

n−1, it can be written as

q = q′ + e

where q′ ∈ Nε and ‖e‖2 ≤ ε. Let a row of Y be yk =[
x0(k), gk

]

, which is an independent copy of y = [

x0, g
]
.

By (E.1), we have
∣
∣Q1(q)− E

[
Q1(q)

]∣∣

=
∣
∣∣
∣
∣

1

p

p∑

k=1

x0(k)Sλ
[〈

yk,q′ + e
〉]

− 1

p

p∑

k=1

E

[
x0(k)Sλ

[〈
yk,q′ + e

〉]]
∣
∣
∣
∣∣

≤
∣
∣
∣
∣
∣

1

p

p∑

k=1

x0(k)Sλ
[〈

yk,q′ + e
〉]

− 1

p

p∑

k=1

x0(k)Sλ
[〈

yk,q′〉]
∣
∣∣
∣
∣

+
∣
∣
∣∣
∣

1

p

p∑

k=1

x0(k)Sλ
[〈

yk,q′〉]− E
[
x0Sλ

[〈
y,q′〉]]

∣
∣
∣∣
∣

+ ∣
∣E
[
x0Sλ

[〈
y,q′〉]]− E

[
x0Sλ

[〈
y,q′ + e

〉]]∣∣ .

Using Cauchy-Schwarz inequality and the fact that Sλ [·] is a
nonexpansive operator, we have

∣
∣Q1(q)− E

[
Q1(q)

]∣∣

≤ ∣
∣Q1(q

′)− E
[
Q1(q

′)
]∣∣

+
(

1

p

p∑

k=1

|x0(k)|
∥
∥∥yk

∥
∥∥

2
+ E

[|x0| ‖y‖2
]
)

‖e‖2

≤ ∣
∣Q1(q

′)− E
[
Q1(q

′)
]∣∣

+ ε 1√
θp

(
2√
θp

+ max
k∈[p]

∥∥
∥gk

∥∥
∥

2
+ E

[‖g‖2
])
.

By Lemma 19, maxk∈[p]
∥
∥gk

∥
∥

2 ≤ √
n/p + 2

√
2 log(2 p)/p

with probability at least 1 − c1 p−3. Also E
[‖g‖2

] ≤
(
E
[‖g‖2

2

])1/2 ≤ √
n/p. Taking t = ξθ−5/2n−3/2 p−1

in Lemma 32 and applying a union bound with ε =
ξθ−2n−2(log 2 p)−1/2/7, and combining with the above esti-
mates, we obtain that
∣
∣Q1(q)− E

[
Q1(q)

]∣∣ ≤ ξ

θ5/2n3/2 p

+ ξ

7θ5/2n2
√

log(2 p)p

(
4
√

n + 2
√

2 log(2 p)
)

≤ 2ξ

θ5/2n3/2 p

holds for all q ∈ S
n−1, with probability at least

1 − c1 p−3 − 2 exp
(
−c3 (ξ) p/(θ4n3)

+ c4 (ξ) n log n + c5(ξ)n log log(2 p)).

Similarly, by (E.1), we have

∥
∥Q2(q)− E

[
Q2(q)

]∥∥
2

=
∥
∥∥
∥
∥

1

p

p∑

k=1

{
gkSλ

[〈
yk,q′ + e

〉]
− E

[
gSλ

[〈
y,q′ + e

〉]]}
∥
∥∥
∥
∥

2

≤ ∥
∥Q2(q

′)− E
[
Q2(q

′)
]∥∥

2

+
(

1

p

p∑

k=1

∥
∥
∥gk

∥
∥
∥

2

∥
∥
∥yk

∥
∥
∥

2
+ E

[‖g‖2 ‖y‖2
]
)

‖e‖2

≤ ∥
∥Q2(q

′)− E
[
Q2(q

′)
]∥∥

2

+ε
[

max
k∈[p]

∥
∥∥gk

∥
∥∥

2

(
1√
θp

+ max
k∈[p]

∥
∥∥gk

∥
∥∥

2

)
+

√
n√
θ p

+ n

p

]
.

Applying the above estimates for maxk∈[p]
∥
∥gk

∥
∥

2, and taking
t = ξθ−2n−1 p−1 in Lemma 33 and applying a union bound
with ε = ξθ−2n−2 log−1(2 p)/30, we obtain that

∥
∥Q2(q)− E

[
Q2(q)

]∥∥
2

≤ ξ

θ2np
+ ξ

30θ2n2 log(2 p)

⎧
⎨

⎩
4

(√
n

p
+
√

2 log(2 p)

p

)2

+ 2n

p

⎫
⎬

⎭

≤ ξ

θ2np
+ ξ

30θ2n2 log(2 p)

{
16 log(2 p)

p
+ 10n

p

}

≤ 2ξ

θ2np

holds for all q ∈ S
n−1, with probability at least

1 − c1 p−3 − exp
(
−c6 (ξ) p/(θ3n3)+ c7(ξ)n log n

+ c8(ξ)n log log(2 p)) .

Taking p ≥ C9(ξ)n4 log n and simplifying the probability
terms complete the proof. �

D. Q(q) Approximates Q(q)

Proposition 36: Suppose θ > 1/
√

n. For any ξ > 0,
there exists some constant C (ξ), such that whenever p ≥
C (ξ) n4 log n, the following bounds

sup
q∈Sn−1

∣
∣Q1(q)− Q1(q)

∣
∣ ≤ ξ

θ5/2n3/2 p
(E.13)

sup
q∈Sn−1

∥
∥Q2(q)− Q2(q)

∥
∥

2 ≤ ξ

θ2np
, (E.14)

hold with probability at least 1 − c(ξ)p−2 for a positive
constant c(ξ).
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Proof: First, for any q ∈ S
n−1, from (E.1), we know that

∣
∣Q1(q)− Q1(q)

∣
∣

=
∣∣
∣
∣
∣

1

p

p∑

k=1

x0(k)Sλ
[
q
yk

]
− 1

p

p∑

k=1

x0(k)

‖x0‖2
Sλ
[
q
yk

]
∣∣
∣
∣
∣

≤
∣
∣
∣∣
∣

1

p

p∑

k=1

x0(k)Sλ
[
q
yk

]
− 1

p

p∑

k=1

x0(k)Sλ
[
q
yk

]
∣
∣
∣∣
∣

+
∣
∣
∣
∣
∣

1

p

p∑

k=1

x0(k)Sλ
[
q
yk

]
− 1

p

p∑

k=1

x0(k)

‖x0‖2
Sλ
[
q
yk

]
∣
∣
∣
∣
∣

≤ 1

p

p∑

k=1

|x0(k)|
∣
∣
∣Sλ

[
q
yk

]
− Sλ

[
q
yk

]∣∣
∣

+ 1

p

p∑

k=1

|x0(k)|
∣
∣∣
∣1 − 1

‖x0‖2

∣
∣∣
∣

∣
∣∣Sλ

[
q
yk

]∣∣∣ .

For any I = supp(x0), using the fact that Sλ[·] is a nonex-
pansive operator, we have

sup
q∈Sn−1

∣
∣Q1(q)− Q1(q)

∣
∣

≤ 1

p
sup

q∈Sn−1

∑

k∈I
|x0(k)|

∣
∣
∣q
 (yk − yk

)∣∣
∣

+
∣
∣
∣
∣1 − 1

‖x0‖2

∣
∣
∣
∣

1

p
sup

q∈Sn−1

∑

k∈I
|x0(k)|

∣
∣
∣q
yk

∣
∣
∣

= 1√
θ p3/2

(∥∥YI − YI
∥∥
�2→�1 +

∣
∣∣
∣1 − 1

‖x0‖2

∣
∣∣
∣ ‖YI‖�2→�1

)
.

By Lemma 24 and Lemma 26 in Appendix B, we have the
following holds

sup
q∈Sn−1

∣
∣Q1(q)− Q1(q)

∣
∣

≤ 1√
θ p3/2

(

20

√
n log p

θ
+ 4

√
2

5

√
n log p

θ2 p
× 7

√
2θp

)

≤ 32

θp3/2

√
n log p,

with probability at least 1 − c1 p−2, provided p ≥ C2n and
θ > 1/

√
n. Simple calculation shows that it is enough to

have p ≥ C3 (ξ) n4 log n for some sufficiently large C1 (ξ) to
obtain the claimed result in (E.13). Similarly, by Lemma 26
and Lemma 27 in Appendix B, we have

sup
q∈Sn−1

∥∥Q2(q)− Q2(q)
∥∥

2

= sup
q∈Sn−1

∥∥
∥
∥
∥

1

p

p∑

k=1

gkSλ
[
q
yk

]
− 1

p

p∑

k=1

g′kSλ
[
q
yk

]
∥∥
∥
∥
∥

2

≤ sup
q∈Sn−1

∥
∥
∥∥
∥

1

p

p∑

k=1

gkSλ
[
q
yk

]
− 1

p

p∑

k=1

g′kSλ
[
q
yk

]
∥
∥
∥∥
∥

2

+
∥
∥
∥
∥
∥

1

p

p∑

k=1

g′kSλ
[
q
yk

]
− 1

p

p∑

k=1

g′kSλ
[
q
yk

]
∥
∥
∥
∥
∥

2

≤ 1

p
sup

q∈Sn−1

p∑

k=1

∥
∥∥gk − g′k

∥
∥∥

2

∣
∣∣q
yk

∣
∣∣

+ 1

p
sup

q∈Sn−1

p∑

k=1

∥∥
∥g′k

∥∥
∥

2

∣∣
∣q
 (yk − yk

)∣∣
∣

≤ 1

p

(∥∥G−G′∥∥
�2→�∞

∥
∥Y

∥
∥
�2→�1 +

∥
∥G′∥∥

�2→�∞
∥
∥Y−Y

∥
∥
�2→�1

)

≤ 1

p

(
120 max(n, log(2 p))√

p

+300
√

n log(2 p)max(
√

n,
√

log(2 p))√
θp

)

≤ 420
√

n log(2 p)max(
√

n,
√

log(2 p))

θ1/2 p3/2

with probability at least 1 − c4 p−2 provided p ≥ C4n and
θ > 1/

√
n. It is sufficient to have p ≥ C5 (ξ) n4 log n to

obtain the claimed result (E.14). �

APPENDIX F
LARGE |q1| ITERATES STAYING IN

SAFE REGION FOR ROUNDING

In this appendix, we prove Proposition 6 in Section IV.
Proof of Proposition 6: For notational simplicity, w.l.o.g. we

will proceed to prove assuming q1 > 0. The proof for q1 < 0
is similar by symmetry. It is equivalent to show that

‖Q2 (q)‖2

|Q1 (q)| <

√
1

4θ
− 1,

which is implied by

L (q) .=
∥
∥E

[
Q2(q)

]∥∥
2 + ∥

∥Q2(q)− E
[
Q2(q)

]∥∥
2

E
[
Q1 (q)

]− ∣
∣Q1 (q)− E

[
Q1 (q)

]∣∣

<

√
1

4θ
− 1

for any q ∈ S
n−1 satisfying q1 > 3

√
θ . Recall from (E.7) that

E
[
Q1(q)

] =
√
θ

p

{[
α�

(
−α
σ

)
+ β�

(
β

σ

)]

+ σ
[
ψ

(
β

σ

)
− ψ

(
−α
σ

)]}
,

where

α = 1√
p

(
q1√
θ

+ 1

)
, β = 1√

p

(
q1√
θ

− 1

)
, σ = ‖q2‖2√

p
.

Noticing the fact that

ψ

(
β

σ

)
− ψ

(
−α
σ

)
≥ 0,

and for q1 > 3
√
θ

�

(
β

σ

)
= �

⎛

⎝ 1
√

1 − q2
1

(
q1√
θ

− 1

)
⎞

⎠ ≥ � (2) ≥ 19

20
,
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we have

E
[
Q1 (q)

] ≥
√
θ

p

{
q1√
θ

[
�
(
−α
σ

)
+�

(
β

σ

)]

+�
(
−α
σ

)
− �

(
β

σ

)}

≥ 2
√
θ

p
�

(
β

σ

)
≥ 19

10

√
θ

p
.

Moreover, from (E.7), we have

∥
∥E

[
Q2 (q)

]∥∥
2 = ‖q2‖2

{
2 (1 − θ)

p
�

(
− λ

σ

)

+ θ
p

[
�
(
−α
σ

)
+�

(
β

σ

)]}

≤ 2 (1 − θ)

p
� (−1)+ θ

p
[� (−1)+ 1]

≤ 2

p
� (−1)+ θ

p
≤ 2

5 p
+ θ

p
,

where we have used the fact that −λ/σ ≤ −1 and
−α/σ ≤ −1. Moreover, from results in Proposition 35 and
Proposition 36 in Appendix E, we know that

sup
q∈Sn−1

∣∣Q1(q)− E
[
Q1(q)

]∣∣

≤ sup
q∈Sn−1

∣
∣Q1(q)− Q1(q)

∣
∣+ sup

q∈Sn−1

∣
∣Q1(q)− E

[
Q1(q)

]∣∣

≤ 1

2 × 105θ5/2n3/2 p
,

and

sup
q∈Sn−1

∥
∥Q(q)− E

[
Q(q)

]∥∥
2

≤ sup
q∈Sn−1

∥
∥Q(q)− Q(q)

∥
∥

2 + sup
q∈Sn−1

∥
∥Q(q)− E

[
Q(q)

]∥∥
2

≤ 1

2 × 105θ2np

hold with probability at least 1 − c1 p−2 provided that
p ≥ �

(
n4 log n

)
. Hence, with high probability, we have

L (q) ≤ 2/(5 p)+ θ/p + (2 × 105θ2np)−1

19
√
θ/(10 p)− (2 × 105θ5/2n3/2 p)−1

≤ 3/5

18
√
θ/10

≤ 1

3
√
θ
<

√
1

4θ
− 1,

whenever θ is sufficiently small. This completes the proof. �
Now, keep the notation in Appendix E for general ortho-

normal basis Ŷ = YU. For any current iterate q ∈ S
n−1

that is close enough to the target solution, i.e.,
∣
∣〈q,U
e1

〉∣∣ =
|〈Uq, e1〉| ≥ 3

√
θ , we have

∣
∣〈Q

(
q; Ŷ

)
,U
e1

〉∣∣
∥
∥Q

(
q; Ŷ

)∥∥
2

=
∣
∣〈UQ

(
q; Ŷ

)
, e1

〉∣∣
∥
∥UQ

(
q; Ŷ

)∥∥
2

= |〈Q (Uq; Y) , e1〉|
‖Q (Uq; Y)‖2

,

where we have applied the identity proved in (E.2). Taking
Uq ∈ S

n−1 as the object of interest, by Proposition 6, we

conclude that
|〈Q (Uq; Y) , e1〉|

‖Q (Uq; Y)‖2
≥ 2

√
θ

with high probability.
APPENDIX G

BOUNDING ITERATION COMPLEXITY

In this appendix, we prove Proposition 7 in Section IV.
Proof of Proposition 7: Recall from Proposition 5 in

Section IV, the gap

G(q) = |Q1(q)|
|q1| − ‖Q2(q)‖2

‖q‖2
≥ 1

104θ2np

holds uniformly over q ∈ S
n−1 satisfying 1

10
√
θn

≤
|q1| ≤ 3

√
θ , with probability at least 1 − c1 p−2, provided

p ≥ C2n4 log n. The gap G(q) implies that
∣∣Q̃1 (q)

∣∣ .= |Q1(q)|
‖Q (q)‖2

≥ |q1| ‖Q2(q)‖2

‖q‖2 ‖Q (q)‖2

+ |q1|
104θ2np ‖Q (q)‖2

⇐⇒ ∣∣Q̃1 (q)
∣∣ ≥ |q1|

‖q2‖2

√
1 − ∣∣Q̃1 (q)

∣∣2

+ |q1|
104θ2np ‖Q (q)‖2

�⇒ ∣
∣Q̃1 (q)

∣
∣2 ≥ |q1|2

(

1 + ‖q2‖2
2

108θ4n2 p2 ‖Q (q)‖2
2

)

.

Given the set � defined in (IV.7), now we know that

sup
q∈�

‖Q (q)‖2

≤ sup
q∈�

∣
∣E
[
Q1(q)

]∣∣+ sup
q∈Sn−1

∣
∣E
[
Q1(q)

]− Q1 (q)
∣
∣

+ sup
q∈Sn−1

∣
∣Q1(q)− Q1 (q)

∣
∣+ sup

q∈�
∥
∥E

[
Q2(q)

]∥∥
2

+ sup
q∈Sn−1

∥
∥E

[
Q2(q)

]− Q2 (q)
∥
∥

2

+ sup
q∈Sn−1

∥
∥Q2(q)− Q2 (q)

∥
∥

2

≤ sup
q∈�

∣
∣E
[
Q1(q)

]∣∣+ sup
q∈�

∣
∣E
[
Q2(q)

]∣∣+ 1

np

with probability at least 1 − c3 p−2 provided p ≥ C4n4 log n
and θ > 1/

√
n. Here we have used Proposition 35 and

Proposition 36 to bound the magnitudes of the four difference
terms. To bound the magnitudes of the expectations, we have

∣
∣E
[
Q1(q)

]∣∣

=
∣
∣
∣∣
∣
E

[
1

p

p∑

k=1

x0(k)Sλ
[
x0(k)q1 + q


2 gk
]
]∣∣
∣∣
∣

≤ 1√
θp

(
1√
θp

+ E
[‖g‖2

]
)

≤ 3
√

n√
θ p

≤ 3n

p
,

∥
∥E

[
Q2(q)

]∥∥
2

=
∥
∥∥
∥
∥
E

[
1

p

p∑

k=1

gk Sλ
[
x0(k)q1 + q


2 gk
]]
∥
∥∥
∥
∥

2

≤ 1√
θp

E
[‖g‖2

]+ E

[
‖g‖2

2

]
≤ 3n

p

Authorized licensed use limited to: New York University. Downloaded on August 26,2020 at 06:14:52 UTC from IEEE Xplore.  Restrictions apply. 



5878 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 10, OCTOBER 2016

hold uniformly for all q ∈ �, provided θ > 1/
√

n. Thus, we
obtain that

sup
q∈�

‖Q (q)‖2 ≤ 3n

p
+ 3n

p
+ 1

np
≤ 7n

p

with probability at least 1 − c3 p−2 provided p ≥ C4n4 log n
and θ > 1/

√
n. So we conclude that
∣
∣Q̃1 (q)

∣
∣

|q1| ≥
√

1 + 1 − 9θ

108 × 72 × θ4n4 .

Thus, starting with any q ∈ S
n−1 such that |q1| ≥ 1

10
√
θn

, we
will need at most

T =
2 log

(
3
√
θ/ 1

10
√
θn

)

log
(

1 + 1−9θ
108×72×θ4n4

) = 2 log
(
30θ

√
n
)

log
(

1 + 1−9θ
108×72×θ4n4

)

≤ 2 log
(
30θ

√
n
)

(log 2) 1−9θ
108×72×θ4n4

≤ C5n4 log n

steps to arrive at a q ∈ S
n−1 with |q̄1| ≥ 3

√
θ for the first

time. Here we have assumed θ0 < 1/9 and used the fact
that log (1 + x) ≥ x log 2 for x ∈ [0, 1] to simplify the final
result. �

APPENDIX H
ROUNDING TO THE DESIRED SOLUTION

In this appendix, we prove Proposition 8 in Section IV.
For convenience, we will assume the notations we used in
Appendix B. Then the rounding scheme can be written as

min
q

‖Yq‖1 , s.t. 〈q,q〉 = 1. (H.1)

We will show the rounding procedure get us to the desired
solution with high probability, regardless of the particular
orthonormal basis used.

Proof of Proposition 8: The rounding program (H.1) can be
written as

inf
q

‖Yq‖1 , s.t. q1q1 + 〈
q2,q2

〉 = 1. (H.2)

Consider its relaxation

inf
q

‖Yq‖1 , s.t. q1q1 + ∥
∥q2

∥
∥

2 ‖q2‖2 ≥ 1. (H.3)

It is obvious that the feasible set of (H.3) contains that of
(H.2). So if e1/q1 is the unique optimal solution (UOS)
of (H.3), it is also the UOS of (H.2). Let I = supp(x0),
and consider a modified problem

inf
q

∥
∥
∥∥

x0

‖x0‖2

∥
∥
∥∥

1
|q1| − ∥

∥G′
Iq2

∥
∥

1 + ∥
∥G′

Ic q2
∥
∥

1 ,

s.t. q1q1 + ∥
∥q2

∥
∥

2 ‖q2‖2 ≥ 1. (H.4)

The objective value of (H.4) lower bounds the objective value
of (H.3), and are equal when q = e1/q1. So if q = e1/q1 is
the UOS to (H.4), it is also UOS to (H.3), and hence UOS to
(H.2) by the argument above. Now

− ∥
∥G′

Iq2
∥
∥

1 + ∥
∥G′

Ic q2
∥
∥

1

≥ − ‖GIq2‖1 + ‖GIcq2‖1 − ∥∥(G − G′)q2
∥∥

1

≥ − ‖GIq2‖1 + ‖GIcq2‖1 − ∥
∥G − G′∥∥

�2→�1 ‖q2‖2 .

When p ≥ C1n, by Lemma 23 and Lemma 26, we know that

− ‖GIq2‖1 + ‖GIcq2‖1 − ∥
∥G − G′∥∥

�2→�1 ‖q2‖2

≥ −6

5

√
2

π
2θ

√
p ‖q2‖2 + 24

25

√
2

π
(1 − 2θ)

√
p ‖q2‖2

− 4
√

n ‖q2‖2 − 7
√

log(2 p) ‖q2‖2
.= ζ ‖q2‖2

holds with probability at least 1 − c2 p−2. Thus, we make a
further relaxation of problem (H.2) by

inf
q

∥
∥
∥
∥

x0

‖x0‖2

∥
∥
∥
∥

1
|q1| + ζ ‖q2‖2 ,

s.t. q1q1 + ∥
∥q2

∥
∥

2 ‖q2‖2 ≥ 1, (H.5)

whose objective value lower bounds that of (H.4). By
similar arguments, if e1/q1 is UOS to (H.5), it is UOS to (H.2).
At the optimal solution to (H.5), notice that it is necessary
to have sign(q1) = sign(q1) and q1q1 + ∥

∥q2

∥
∥

2 ‖q2‖2 = 1.
So (H.5) is equivalent to

inf
q

∥
∥∥
∥

x0

‖x0‖2

∥
∥∥
∥

1
|q1| + ζ ‖q2‖2 ,

s.t. q1q1 + ∥
∥q2

∥
∥

2 ‖q2‖2 = 1. (H.6)

which is further equivalent to

inf
q1

∥
∥
∥
∥

x0

‖x0‖2

∥
∥
∥
∥

1
|q1| + ζ

1 − ∣
∣q1

∣
∣ |q1|∥

∥q2

∥
∥

2

, s.t. |q1| ≤ 1
∣
∣q1

∣
∣ .

(H.7)

Notice that the problem in (H.7) is linear in |q1| with a
compact feasible set. Since the objective is also monotonic
in |q1|, it indicates that the optimal solution only occurs at
the boundary points |q1| = 0 or |q1| = 1/

∣
∣q1

∣
∣. Therefore,

q = e1/q1 is the UOS of (H.7) if and only if

1
∣
∣q1

∣
∣

∥
∥
∥
∥

x0

‖x0‖2

∥
∥
∥
∥

1
<

ζ
∥
∥q2

∥
∥

2

.

Since
∥
∥
∥ x0‖x0‖2

∥
∥
∥

1
≤ √

2θp conditioned on E0, it is sufficient to
have

√
2θp

2
√
θ

≤ ζ = 24

25

√
2

π

√
p

(

1 − 9

2
θ − 25

6

√
π

2

√
n

p

−175

24

√
π

2

√
log(2 p)

p

)

.

Therefore there exists a constant θ0 > 0, such that whenever
θ ≤ θ0 and p ≥ C3(θ0)n, the rounding returns e1/q1. A bit of
thought suggests one can take a universal C3 for all possible
choice of θ0, completing the proof. �

When the input basis is Ŷ = YU for some orthogonal matrix
U �= I, if the ADM algorithm produces some q = U
q′,
such that q ′

1 > 2
√
θ . It is not hard to see that now the

rounding (H.1) is equivalent to

min
q

‖YUq‖1 , s.t.
〈
q′,Uq

〉 = 1.

Renaming Uq, it follows from the above argument that at
optimum q� it holds that Uq� = γ e1 for some constant γ
with high probability.
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