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Motivation: Dictionary Learning Main Ingredients Il - A Glimpse into High-dimensional Geometry

Given Y, find (A, X) such that Y ~ AX, with X as sparse as possible.
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Problem: Dictionary Recovery

Theorem: (informal) Suppose Ay =TI and hence Y = Ay, X, = X,. For 6 € (0,1/2) and p sufficiently small

Given n x p data matrix Y = Ay X, with X, sparse, recover A, and X. O(n~¢), whenever p > ﬁn?’ log % the following hold simultaneously w.h.p.:
» Even A, is known, seeking X is generally hard (sparse recovery problem!) , c.0 "
» Recovery only up to sign, permutation, and scale (as A, X, = AJIIX « X II* X, for any permutation IT Vog(w; Xo) = 71 Vw st flw| < 1/2
and full rank diagonal X2) w*Vg(w; X)) 1 1
» Due to the symmetry, hard to convexity the problem! |w] > b Vw st m < [lw]| < 20+/5
We focus on the case A, is complete (square and invertible), and the coefficients X, obeys a w*V2g(w; Xo)w ! \/4n 1
- - . VB with Vo ~ o ’ < —c,f . ——=< < ,
Bernoulli-Gaussian model: [X|;; = Vi;Bij, With Vi; ~ N(0,1) and B;; ~ Ber(6). ol < —c Vw s.t 0T S Jw]|| < ym
Main Result (informal) and the function g(w; X)) has exactly one local minimizer w, over the open set I = {,w wl| < ‘ﬁnl},
Forany 0 € (0,1/3), given Y = A X, with A, a complete dictionary and X, ~; ;. BG (0), there is a which satisfies
polynomial-time algorithm that recovers A, and X with high probability (at least 1 — O(p~°)) whenever lw, — 0| < min Ccu\/n logp
p = px(n,1/0, K (Ao), 1/p) N oV p 16
for a fixed polynomial p, (-), where x (Ay) is the condition number of A, and . is a smoothing parameter
which can be set as y = cn/". Main Ingredients Il - A Riemannian Trust-region Algorithm on Sphere
Main Ingredients | - A Nonconvex Formulation Consider g € S"!; for § L g, calculus gives
1 S
. When A, is complete, row(Y') = row(X,). f(expg(8)) = f(a) + (8, V (@) + 56" (V*(@) — (. V(@) 6 + O(|8])
» Rows of X, are sparse vectors in row(Y ). When p > (2(nlogn), they are also the sparest ones! [Spielman = F(8:q) + O(||8])
etal 12] where exp,(d) = qcos||d]| + ﬁsm |6]].

Find sparsest vectors in a given linear subspace ...

Natural formulation:

X0 Basic Riemannian trust-region method:
In1mi Y bject t 0. =
Of | .mmlmlze |q _‘o subject to  q # 5.c  agmin 1(6qr)
S Convex relaxation: [Spielman et al’12] §ET,, S 1,[|8]| <A
minimize ||g*Y ||, subjectto ||g7Y ||, = 1. Qi1 = €XPg,(0x).
Convex relaxation is known to break down when each column of X, contains more than O(y/n) nonzeros. The trust-region subproblem involves a (possibly nonconvex) quadratic objective and one norm constraint.
We look at a nonconvex “relaxation”: Solvable in polynomial time by root finding [More+Sorensen’83] or SDP relaxation.
L RS * .
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