Complete Dictionary Recovery over the Sphere Ju Sun, Qing Qu, and John Wright, Department of Electrical Engineering, Columbia University

Motivation: Dictionary Learning

Given Y, find (A, X) such that $Y \approx AX$, with X as spars

An image

Patches

Problem: Dictionary Recovery

Given $n \times p$ data matrix $\mathbf{Y} = \mathbf{A}_0 \mathbf{X}_0$ with \mathbf{X}_0 sparse, recove

- \blacktriangleright Even A_0 is known, seeking X_0 is generally hard (sparse
- Recovery only up to sign, permutation, and scale (as A) and full rank diagonal Σ)
- Due to the symmetry, hard to convexify the problem!

We focus on the case A_0 is complete (square and invertible **Bernoulli-Gaussian model:** $[X_0]_{ij} = V_{ij}B_{ij}$, with $V_{ij} \sim \mathcal{N}(0,$

Main Result (informal)

 \mathbf{X}_0

 \mathcal{S}

For any $\theta \in (0, 1/3)$, given $\mathbf{Y} = \mathbf{A}_0 \mathbf{X}_0$ with \mathbf{A}_0 a complete d polynomial-time algorithm that recovers A_0 and X_0 with high $p \ge p_{\star}(n, 1/\theta, \kappa)$

for a fixed polynomial $p_{\star}(\cdot)$, where $\kappa(\mathbf{A}_0)$ is the condition n which can be set as $\mu = cn^{-5/4}$.

Main Ingredients I - A Nonconvex Formulation

- ▶ When A_0 is complete, $row(Y) = row(X_0)$.
- ▶ Rows of X_0 are sparse vectors in row(Y). When $p \ge \Omega($ et al '12]

Find sparsest vectors in a given linear subspace ...

Natural formulation:

minimize

Convex relaxation: [Spielman et

minimize $\|\boldsymbol{q}^*$

Convex relaxation is known to break down when each colu We look at a nonconvex "relaxation":

minimize $f(\boldsymbol{q}; \boldsymbol{Y}) \doteq \frac{1}{p} \sum_{k=1}^{p} h_{\mu}(\boldsymbol{q}^{*} \boldsymbol{y}_{k})$

with $h_{\mu}(\cdot)$ a smooth approximation to the $|\cdot|$ function:

$$h_{\mu}(z) = \mu \log \left(\frac{\exp(z/\mu) + \exp(z)}{2} \right)$$

	Ма
se as possible. Very successful in classical image processing, visual recognition, compressive signal requisition, and recently into deep architectures for signal classification limited theoretical understanding.	
er A_0 and X_0 . e recovery problem!) $A_0X_0 = A_0\Pi\Sigma * \Sigma^{-1}\Pi^*X_0$ for any permutation Π	The O(n
le), and the coefficients X_0 obeys a 1) and $B_{ij} \sim \text{Ber}(\theta)$.	
	ano
dictionary and $X_0 \sim_{i.i.d.} BG(\theta)$, there is a gh probability (at least $1 - O(p^{-6})$) whenever $(A_0), 1/\mu$)	whic
number of $oldsymbol{A}_0$ and μ is a smoothing parameter	Ма
	Con
$(n \log n)$, they are also the sparest ones! [Spielman	wher
$\ \boldsymbol{q}^*\boldsymbol{Y}\ _0$ subject to $\boldsymbol{q} \neq \boldsymbol{0}$. al'12]	Bas
$oldsymbol{Y} \ _1$ subject to $\ oldsymbol{q}^*oldsymbol{Y}\ _{\infty} = 1.$ Jumn of $oldsymbol{X}_0$ contains more than $O(\sqrt{n})$ nonzeros.	The Solv
subject to $\ \boldsymbol{q}\ _2 = 1.$	Re
$\left(\frac{-z/\mu}{2}\right) = \mu \log \cosh(z/\mu)$	Ju S onli

ain Ingredients II - A Glimpse into High-dimensional Geometry

eorem: (informal) Suppose $A_0 = I$ and hence $Y = A_0X_0 = X_0$. For $\theta \in (0, 1/2)$ and μ sufficiently small (n^{-c}) , whenever $p \ge \frac{C}{\mu^2 \theta^2} n^3 \log \frac{n}{\mu \theta}$, the following hold simultaneously w.h.p.:

$$\nabla^2 g(\boldsymbol{w}; \boldsymbol{X}_0) \succeq \frac{c_\star \theta}{\mu} \boldsymbol{I} \qquad \forall \boldsymbol{w} \quad \text{s.t.}$$

$$\frac{\boldsymbol{w}^* \nabla g(\boldsymbol{w}; \boldsymbol{X}_0)}{\|\boldsymbol{w}\|} \ge c_* \theta \qquad \qquad \forall \boldsymbol{w} \quad \text{s.t.}$$

$$rac{\partial oldsymbol{w}^*
abla^2 g(oldsymbol{w}; oldsymbol{X}_0) oldsymbol{w}}{\|oldsymbol{w}\|^2} \leq -c_\star heta$$
 $orall oldsymbol{w}$ s.t.

d the function $g(\boldsymbol{w}; \boldsymbol{X}_0)$ has exactly one local minimizer \boldsymbol{w}_{\star} over the open set $\Gamma \doteq \left\{ \boldsymbol{w} : \| \boldsymbol{w} \| < \sqrt{\frac{4n-1}{4n}} \right\}$, ch satisfies

$$\|\boldsymbol{w}_{\star} - \boldsymbol{0}\| \leq \min\left\{\frac{c_{c}\mu}{\theta}\sqrt{\frac{n\log p}{p}}\right\}$$

ain Ingredients III - A Riemannian Trust-region Algorithm on Sphere

isider $oldsymbol{q} \in \mathbb{S}^{n-1}$; for $oldsymbol{\delta} \perp oldsymbol{q}$, calculus gives . $f(\exp_{\boldsymbol{q}}(\boldsymbol{\delta})) = f(\boldsymbol{q}) + \langle \boldsymbol{\delta}, \nabla f(\boldsymbol{q}) \rangle + \frac{1}{2} \boldsymbol{\delta}^* \left(\nabla^2(\boldsymbol{q}) - \langle \boldsymbol{q}, \nabla f(\boldsymbol{q}) \rangle \right) \boldsymbol{\delta} + O(\|\boldsymbol{\delta}\|^3)$ $= \widehat{f}(\boldsymbol{\delta}; \boldsymbol{q}) + O(\|\boldsymbol{\delta}\|^3)$ ere $\exp_{\boldsymbol{q}}(\boldsymbol{\delta}) \doteq \boldsymbol{q} \cos \|\boldsymbol{\delta}\| + \frac{\boldsymbol{\delta}}{\|\boldsymbol{\delta}\|} \sin \|\boldsymbol{\delta}\|.$

sic Riemannian trust-region method:

$$oldsymbol{\delta}_{\star} \in rgmin_{oldsymbol{\delta}\in T_{oldsymbol{q}_k}\mathbb{S}^{n-1}, \|oldsymbol{\delta}\|\leq\Delta} \widehat{f}(oldsymbol{\delta};oldsymbol{q}_k)$$
 $oldsymbol{q}_{k+1} = \exp_{oldsymbol{q}_k}(oldsymbol{\delta}_{\star}).$

trust-region subproblem involves a (possibly nonconvex) quadratic objective and one norm constraint. vable in polynomial time by root finding [More+Sorensen'83] or SDP relaxation.

ferences

Sun, Qing Qu, John Wright. Complete dictionary recovery over the sphere. Available ine: http://arxiv.org/abs/1504.06785

$$\|\boldsymbol{w}\| \leq \frac{\mu}{4\sqrt{2}},$$

$$\frac{\mu}{4\sqrt{2}} \leq \|\boldsymbol{w}\| \leq \frac{1}{20\sqrt{5}},$$

$$\frac{1}{20\sqrt{5}} \leq \|\boldsymbol{w}\| \leq \sqrt{\frac{4n-1}{4n}},$$

$$\left\{\frac{\mu}{16}\right\}$$

