

Short-and-Sparse Deconvolution – A Geometric Approach

Yenson Lau^{†,*}, Qing Qu^{‡,*}, Han-Wen (Henry) Kuo[†], Pengcheng Zhou[†], Yuqian Zhang[¢], and John Wright[†]

[†]Columbia University, [‡]New York University, [◇]Cornell University, [×]denote equal contribution

$\lim_{\boldsymbol{a}\in\mathbb{S}^{n-1},\;\boldsymbol{a}}$	$\Psi_{\rm BL}(\boldsymbol{a},\boldsymbol{x}) := \frac{1}{2} \underbrace{\ \boldsymbol{y} - \boldsymbol{a} \ast \boldsymbol{x}\ ^2}_{\boldsymbol{\psi}} + \lambda \cdot \boldsymbol{\psi}$	$\underbrace{\ m{x}\ _1}$.
	data fidelity	sparsity

$$A_{BL}(\boldsymbol{a},\boldsymbol{x}) := \frac{1}{2} \|\boldsymbol{x}\|^2 - \langle \boldsymbol{y}, \boldsymbol{a} \circledast \boldsymbol{x} \rangle + \frac{1}{2} \|\boldsymbol{y}\|^2 + \lambda \|\boldsymbol{x}\|_1,$$

 $-\Psi_{ABL}(\boldsymbol{a},\boldsymbol{x}) \approx \Psi_{BL}(\boldsymbol{a},\boldsymbol{x})$ when $\mu(\boldsymbol{a}_0) \searrow 0$. The approximation breaks

$$\min_{\boldsymbol{a}_k, \boldsymbol{x}_k} \frac{1}{2} \left\| \boldsymbol{y} - \sum_{k=1}^N \boldsymbol{a}_k \circledast \boldsymbol{x}_k \right\|^2 + \lambda \sum_{k=1}^N \|\boldsymbol{x}_k\|_1, \quad \text{s.t. } \|\boldsymbol{a}_k\| = 1$$

by adapting similar ideas for recovering a single kernel.

(c) Incoherent Kernel

Optimization from Geometric Intuitions

(d) Coherent Kernel

Applications

https://github.com/qingqu06/

sparse_deconvolution

https://deconvlab.github.io/