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The Success of Deep Learning

computer vision

(Credit: Appen. (2019))

gameplay

(Credit: AlphaGo)
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ChatGPT

natural language processing

(Credit: Andrey Suslov (2023))

autonomous driving

(Credit: Phil Brown (2019))
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The Trend of Large Models...
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Figure: Accuracy vs. model size for image classification on ImageNet dataset

~23 million  >> ~1 million

(# Parameters in ResNet-50) (# Samples in ImageNet)

In principle, deep network can fit any training labels!
(i.e., not only clean, but also corrupted labels)
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-
The Challenges & Opportunities in Large Models...
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Figure: Accuracy vs. model size for image classification on ImageNet dataset
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Figure: Accuracy vs. model size for image classification on ImageNet dataset

[ Theory and principles behind its success?
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Low-Dimensional Structures Are Largely Ignored...

sparse X

Low-Complexity Structures

' 4 \

Y = Ag-Xo - W oY, W)
Generative Models Optimization
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Low-Dimensional Structures Are Largely Ignored...

sparse X

Low- Complexity Structures

Y 4 NN

i Y W
Y = A X, ‘ W oY, W)
Generative Models Optimization
[ ]
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Sparse Recovery
[Donoho’06, Candes’08]

Low-rank Matrix Recovery
[Candes'08, Recht'11,
Candes'11]

(Sparse) Phase Retrieval
[Candes'13, Shechtman'15]

Super-resolution
[Candes’'14,
Fernandez-Granda'16]

(Sparse) Blind
Deconvolution [Ahmed’14,
Zhang'17, Kuo'20]

(Convolutional) Dictionary
Learning[Aharon’06,
Sun’16, Bristow'13,
Papyan'17]
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The Emergence of Low-Dim Models in Deep Learning

entropy

e : ] .\Hk X + ‘ RN ; e e
- Inerpretabl Layers. a - = :

~ < raining ekl

------ Cnpullyl;{_?:_ ———
Network Architectures Representations Regularizations &
Generalization
[Gregor'10, Liu’18, Sulam’18, [Pennington’17, Bansal'18, , o
Papyan’18, Monga'19] Xiao'18, Wang'20, Ye'20, [Neyshabur'17, Mianjy'18,
o Qi'20,Han’20,Zhu'21,Fang’21] Ulyanov'18, Gidel'19, Arora’9,

Belkin’19, Nakkiran’19, Yang'20]

image credited to Monga et al., Yu et al. & Azizan et al.
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-
Outline of Today's Course

Lec.1 Low-dimensional Models & Noconvex Optimization
(1hrs)

Lec.2 Low-dimensional Representations in Deep Learning I:
Neural Collapse (1hrs)

Lec.3 Low-dimensional Representations in Deep Learning IlI:
Law-of-Parsimony in GD (1.5hrs)

Lec.4 Low-dimensional Models for Robust Learning (0.5hrs)
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NS
Outline of Today's Course

Rotational symmetry

Discrete symmetry
Lec.1 Low-dimensional Models & Noconvex Optimization (1hrs)
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-
Outline of Today's Course

class 1 simplex ETF vertex

®
class 1 mean

class 1 classifier

9
class 3 classifier
dass 3 feature |
class 3 simplex ETF vertex

dass 2 classifier | ¢

Credit: Han et al.
Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central
Path. ICLR, 2022.

Lec.2 Low-dimensional Representations in Deep Learning I:
Neural Collapse (1hrs)
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-
Outline of Today's Course

aj(t)

Singular Values Right Singular Vectors Left Singular Vectors

Lec.3 Low-dimensional Representations in Deep Learning Il:
Law-of-Parsimony in GD (1.5hrs)
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-
Outline of Today's Course

yi = f(zi; O )+ i

noisy label input params. sparse label noise

!

Exact Separation of Sparse Corruption with Incoherence between Data and Noise

[Lec.4 Low-dimensional Models for Robust Learning (0.5hrs)

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023

11/53



Outline

@ Introduction



Most of the Machine Learning Problems are Nonconvex...
fley) =2 +¢°

=
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Figure: Convex vs. Nonconvex Optimization Problems.
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Introduction

Basic Calculus

Critical points or stationary points: gradient vanishes

Convex Non-Convex

Local min

Minimizer Global min

® convex function: critical point = minimizer

® nonconvex function: not all critical points are minimizers
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Basic Calculus

Introduction

Critical points with non-singular hessian

® |ocal minimizer: hessian is positive definite

® saddle points: hessian has both positive and negative eigenvalues
® local maximizer: hessian is negative definite

Minimizer

Vip>0
Noncritical Point (V¢ # 0)

Saddle

Max1m1zer

Amin V2 p<0
Amax V20 >0
Qing Qu (EECS, University of Michigan)

Vip <0
Critical Points (V¢ = 0)

Nonconvex Optimization



Introduction

Challenges of Nonconvex Optimization — Pessimistic Views

Consider the problem of minimizing

a general nonlinear function:
minp(z), ze€C
z
In the worst case, even finding a
local minimizer can be NP-hard?.

Spurious local minimizers Flat saddle points

'Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987 =

o =) - E E DA
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Introduction

Challenges of Nonconvex Optimization — Pessimistic Views

Consider the problem of minimizing
a general nonlinear function:

mzin o(z), zeC. (1)

V

Spurious local minimizers Flat saddle points

In the worst case, even finding a
local minimizer can be NP-hard?®.

Hence, typically people seek
to work with mild guarantees for
nonconvex problems:

@ convergence to some critical point z such that Vy(z) = 0;

@® or convergence to some local minimizer V2p(z) = 0.

'Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Benign Nonconvex Optimization Landscape

General Case
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Introduction

Benign Nonconvex Optimization Landscape

strict saddle

‘has no NC)

v . )
all local minima obey NC  negative curvature

v v v
global minima “flat” saddle
General nonconvex problems Our training problem
General Case Structured Case
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Introduction

Example I: Low-rank Matrix Completion
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We observe:

Y = Pq X .
Observed ratings Complete ratings
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Introduction

Example I: Low-rank Matrix Completion

Eﬁ!lﬁ
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Frequency
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’ R % 05 1 15 2 25
Eigenvalue (1) x10°
We observe:
. = ,PQ ) .
Observed ratings Complete ratings

Matrix completion via nonconvex Burer-Monteiro factorization

. A A
min f(U.V)= > OV =il + S0+ 51V
(,5)€Q

~
reg(U,V)
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Introduction

Example Il: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Lhoisy = A X @ + =z (2)

dictionary sparse noise
Dictionary learning: the motifs or atoms of the dictionary are unknown:

Yy = A X (3)

data  dictionary sparse
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Introduction

Example Il: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Ioisy = A x x + 2z (2

dictionary sparse noise
Dictionary learning: the motifs or atoms of the dictionary are unknown:

Yy = A X. (3)
data  dictionary sparse

® Band-limited signals: A = F, the Fourier transform;

® Pijecewise smooth signals: A = W, the wavelet transforms;

e Natural images A =7 (How to learn A from the data Y'?)
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Dictionary Learning

0 10 220 3 4 5 60 70 @ 9 100

Recovered solutions always obtain the same objective value.

Qing Qu (EECS, University of Michigan)
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Introduction

Example: Sparse Blind Deconvolution

Sparse Blind Deconvolution:
the convolutional motif or sparse
activation signal are unknown:

=E*..

i Kernel Ao Activation Map Xo
Y — A ” X ) (4) Observation Y

data motif sparse

® Scientific signals:
activation signals are sparse

-H -

Observation Kernel Ao

® |mage deblurring:
natural images are
sparse in the gradient domain
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Introduction

Sparse Blind Deconvolution

Retiadia M

CRETTT

‘e
i t
s x
«
“
3
P
p*

Recovered solutions are near signed shift-truncations of the ground
truth.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 22 /53



Introduction

Convolutional Dictionary learning

Y:ZAi x X,

data P motif sparse

o] ©

J)de| ©

Recovered solutions are near signed shift-truncations of the ground
truth.
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Opportunities — Optimistic Views

Nonconvex

problems that arise

in machine learning typically
have benign data structures,
in terms of symmetries!

Rotational symmetry

Discrete symmetry

[} = =
Qing Qu (EECS, University of Michigan) Nonconvex Optimization



Opportunities — Optimistic Views

S

Rotational symmetry Discrete symmetry

Nonconvex

problems that arise

in machine learning typically
have benign data structures,
in terms of symmetries!

The function ¢ is invariant
under certain group action:

® low rank matrix recovery: invariant under a continuous rotation:

o((UT,VI™Y) = o((U,V)), Vinvertible T.

® dictionary learning: invariant under signed permutations:
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Opportunities — Optimistic Views

O v

Rotational symmetry Discrete symmetry

Nonconvex

problems that arise

in machine learning typically
have benign data structures,
in terms of symmetries!

The function ¢ is invariant
under certain group action:

® low rank matrix recovery: invariant under a continuous rotation:

o((UT,VI™Y) = o((U,V)), Vinvertible T.

® dictionary learning: invariant under signed permutations:
¢((A, X)) = p((AILII" X)), VII € SP(n).
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Introduction

Nonlinearity and Symmetry

Intrinsic ambiguity against the uniqueness of the solution

® |ow rank matrix recovery
X =UpVy =U, T v

for any invertible T".

e dictionary learning
Y = AQ.XO = Aol_[l_[*XO

for any signed permutation II.
® blind deconvolution

Yy = ag *xxy = S-[ag] * S_[xo]

for any signed shift .

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023
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Introduction

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on R™. A function ¢ : R” — R™ is G-symmetric

if for all z € R", g € G, p(go z) = ¢(z).

Rotational symmetry

Most symmetric objective functions that
arise in structured signal recovery do not
have spurious local minimizers or flat
saddles.

Discrete symmetry

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 26 /53



Introduction

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on R™. A function ¢ : R” — R™ is G-symmetric
if for all z € R", g € G, p(go z) = ¢(z).

Most symmetric objective functions that

arise in structured signal recovery do not .
have spurious local minimizers or flat i :
saddles.

Rotational symmetry Discrete symmetry

Slogan 1: the (only!) local minimizers are symmetric ver-
sions of the ground truth.

Slogan 2: any local critical point has negative curvature
in directions that break symmetry.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 26 /53



Outline

@® Symmetry & Geometry for Nonconvex Problems in Practice
Problems with Rotational Symmetry
Problems with Discrete Symmetry



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Problems with Rotational Symmetry

Eigenspace Computation

Compute the principal subspace
of a symmetric matrix.

minyx x_y — 3trace [X*AX].

Symmetry: X — XR
G=0(r)

Generalized Phase Retrieval

Recover a complex vector o from
magnitude measurements y = | Azo|.

ming 3[y* — |Az?|3.

Symmetry: x — xe'?
G=S'>0(2)

Nonconvex Problems with Rotational Symmetries

Matrix Recovery

Recover a low-rank matrix X = UV'*
from incomplete / corrupted observations

ming,v L(Y — A[UV*]) + p(U,V).

Symmetry: (U, V) — (UT, VI %)
G =GL(r) or G = O(r)

Qing Qu (EECS, University of Michigan)

Nonconvex Optimization
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Symmetry & Geometry for Nonconvex Problems in Practice

Low Rank Matrix Recovery

Goal: Given Y = A(X), recover low rank matrix X = UyVj

? 5
a@ 4 _ 4

T .7 55 ... 3
5

B -

Complete Ratings X,

ITtems
Observed (Incomplete) Ratings ¥’

Qing Qu (EECS, University of Michigan)
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery
Goal: Given Y = A(X), recover low rank matrix X = UyV)

z @ v 4
2 ) = Pq ]
57 ... 7 55 ... 3
- Complete Ratings X,

B -

Observed (Incomplete) Ratings ¥

e Convex formulation:

i X st. Y =AX
min X, (X)

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 28/53



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery
Goal: Given Y = A(X), recover low rank matrix X = UyV)

Brss 2
z @ ? 4
2 = Po .
5 7 ... 7 55 ..3
G Complete Ratings X,
ITtems
Observed (Incomplete) Ratings Y

e Convex formulation:

i X it Y =AX
min XL s (X)

¢ Nonconvex formulation:

. - T2
UeRm*r,VeRmxr ¥ = AWV + reg(@. V)

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 28/53



Low Rank Matrix Recovery

. 1 T 12
min 5 |Y — AUV} +reg(U, V)
Inherent Symmetry:

X = UV = U, T vy

for any invertible I' € R™*".

Qing Qu (EECS, University of Michigan)
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

1
min 5 [[Y - AUVT)|% + reg(U, V)

Inherent Symmetry:
X =UyVy =U, T 'vo

for any invertible I' € R™*".

* Are (UoI, VoI'™ 1) the only local solutions?

® Does there exist any flat stationary point?

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 29/53



i D e
Simple Setting: Rank-1 Symmetric Matrix

e Simplifications:
cY —AX)=X
® X = UyU{ is symmetric and rank-1

X =uouf = (—uQ)(-Q"uy)

the signed rotational symmetry.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 30/53



i D e
Simple Setting: Rank-1 Symmetric Matrix

e Simplifications:
c Y —AX)=X
* X = UyU{ is symmetric and rank-1
X = uoug = (~u0Q)(-Q"ug)
the signed rotational symmetry.

¢ Nonconvex formulation:

1
mﬂin o(u) = 1 HX - uuTH; + X3

const

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 30/53



Symmetry & Geometry for Nonconvex Problems in Practice

Rank-1 Symmetric Matrix

. _1 T2
min ¢(u)—1||X—uu HF

® Critical points have zero gradient

Vo = (uul — X)u

= ullyu — Xu
=0

Qing Qu (EECS, University of Michigan)
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N
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

min o) = i 1% — wu |

® Critical points have zero gradient

Vo = (uul — X)u
= 3w — Xu
=0

® Therefore, critical points must be one of the following
°* u=+Qug
* u=20

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 31/53



Rank-1 Symmetric Matrix

min o)

with the second-order derivative

1 2
111X —

V2 = 2uu’ + ||lul5 - X.

Qing Qu (EECS, University of Michigan)
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

. . 1 T2
min d(u) = 1 HX —uu HF

with the second-order derivative
Vi = 2uu’ + ||u||§ I-X.

Then the stationary points can be grouped as

® | ocal minimizer u = +Quy:
V26 = uul + ||lul31 >0
® Maximizer u =0

Vip=-X <0.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 32/53



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

e Symmetric low rank matrix recovery:

. .1 2
min o(u) = 1 | X — UUTHF.

e General low rank matrix recovery:

. 1
min o(w) = 5 | X ~ UV 4 A UE+ AV

Local minimizers: are ground truth Uy and Vj up to rotation;
Negative curvature: between multiple local minimizers.
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Symmetry & Geome

for Nonconvex Problems in Practice

Problems with Discrete Symmetry

Nonconvex Problems with Discrete Symmetries
Eigenvector Computation

Maximize a quadratic form

over the sphere.

Dictionary Learning

Approximate a given matrix Y’

asY ~ AX, with X sparse

max,egn-1 ya* Aw.

min geq,x 31Y — AX[% + AIX|1.
Symmetry: x — —x Symmetry: (A, X) — (AT, XT*)
G = {+1} G = SP(n)
Tensor Decomposition
Determine components a; of an orthogonal
decomposable tensor T = Y, a; ® a; ® a; @ a;

Short-and-Sparse Deconvolution

Recover a short a and a sparse @
from their convolution y = a * .

maxxeo(n) L; (@i, @i, @i, @:).
Symmetry: X — XT
G = P(n)
Qing Qu (EECS, University of Michigan)

ming,x 3|y —ax2[3 + Aa|i.

Symmetry: (a,x) — (as-[a),a"Ls_[z])
G = Zn xRy or G = Zp x {#1}
Nonconvex Optimization

m]
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Dictionary Learning

Goal: Given dataset Y, find the optimal dictionary A that renders the
sparsest coefficient X

min || X]|; st Y =AX.
AX

)

In presence of noise, the optimization problem can be rewritten as

. 1 2
min 5 Y = AX[E+ A [X]),

)

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Dictionary Learning

Goal: Given dataset Y, find the optimal dictionary A that renders the
sparsest coefficient X

min || X]|; st Y =AX.
AX

)

In presence of noise, the optimization problem can be rewritten as

. 1 2
min 5 Y = AX[E+ A [X]),

)

Inherent Symmetry:

Y = AITT* X,

for any signed permutation matrix I'.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 35/53



e D = R e
Orthogonal Dictionary Learning

® Input: matrix Y which is the product of an orthogonal matrix Ag
(called a dictionary) and a sparse matrix Xo:

Y = AoXo, AoAé = I, X(] sparse.
® Optimization formulation:

min [ X, st Y =AX, AA"=1I
A X

)

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 36/53



e D = R e
Orthogonal Dictionary Learning

® Input: matrix Y which is the product of an orthogonal matrix Ag
(called a dictionary) and a sparse matrix Xo:

Y = AoXo, AoAé = I, Xo sparse.
® Optimization formulation:

min [ X, st Y =AX, AA"=1I
A X

)

® Given the constraint, X is uniquely defined in terms of A

X =A"AX =A"Y.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 36/53



e D = R e
Orthogonal Dictionary Learning

® Input: matrix Y which is the product of an orthogonal matrix Ag
(called a dictionary) and a sparse matrix Xo:

Y = AoXo, AoAé = I, Xo sparse.
® Optimization formulation:

min [ X, st Y =AX, AA"=1I
A X

)

® Given the constraint, X is uniquely defined in terms of A

X =A"AX =A"Y.

® Equivalent formulation:

min  [JA'Y|,.
AcO(n)

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023
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e D = R e
Orthogonal Dictionary Learning

Instead of aiming to solve the entire matrix A = [a1, ..., a,] at once via

min  [|A'Y||;.
AcO(n)

A simpler model problem solves for the columns a; one at a time

min  ||a*Y];.
llall,=1

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 37/53



e D = R e
Orthogonal Dictionary Learning

Instead of aiming to solve the entire matrix A = [a1, ..., a,] at once via

min  [|A'Y||;.
AcO(n)

A simpler model problem solves for the columns a; one at a time

min  ||a*Y];.
lall,=1
Stationary Points:
® g = *+a;, then the Hessian is positive definite

*a=3 . +—L_a,, there exist negative curvatures alone a;(i € I)

T

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 37/53



Orthogonal Dictionary Learning — Geometry
Local minimizers are ground truth a; or —a,.
Negative curvature between multiple local minimizers.

Qing Qu (EECS, University of Michigan)
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Short-and-Sparse Blind Deconvolution

Goal: Given convolutional data y, find the short signal a and the sparse
signal @ such that y = a x «.

Inherent Symmetry:

1 N
Y = ag *x Ty = aslag] * 5 [20] /\ N : ,

for any shift [ and nonzero scaling.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 39/53



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Short-and-Sparse Blind Deconvolution

Goal: Given convolutional data y, find the short signal a and the sparse
signal @ such that y = a x «.

Inherent Symmetry:

1 N
Y = ag *x Ty = aslag] * 5 [20] /\ N ——

for any shift [ and nonzero scaling.
The practical optimization problem can be written as

min 3y —axz|h+ Al
lal=1.2

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 39/53



Symmetry & Geometry for Nonconvex Problems in Practice

Objective Function — Near One Shift

=.

- s
SPtn{a €SPt ||a — seag)l2 <}
truth.

Objective function is strongly convex near a shift sy[ag] of the ground

Qing Qu (EECS, University of Michigan)
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Objective Function — Linear Span of Two Shifts

Subspace 8{51,52} = {aw, s¢,[ao] + auyse,[ao] | cuy, ap, € R}

Qing Qu (EECS, University of Michigan)

Nonconvex Optimization
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Symmetry & Geometry for Nonconvex Problems in Practice

5{51 Lo}

Objective Function — Linear Span of Two Shifts

Local minimizers are near signed shifts +s/[ao].

Negative curvature between two shifts sy, [ag], sg,[ao].

Qing Qu (EECS, University of Michigan)
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Objective Function — Multiple Shifts

S{gl,gz,g?)} N Sp-1

Objective ¢, over the linear span Sy, ¢, ¢, = {Z?Zl ay,; ¢, |aol}
Local minimizers are near signed shifts £sy, [ao].

Qing Qu (EECS, University of Michigan)
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Symmetry and Nonconvexity

Rotational symmetry Discrete symmetry

Slogan 1: the (only!) local minimizers are symmetric ver-
sions of the ground truth.

Slogan 2: any local critical point has negative curvature
in directions that break symmetry.
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Nonconvex Optimization in Generic Setting

Consider the problem of minimizing
a general nonconvex function:

mminf(a:), xeC (5)

In the worst case, even finding
.. . i 1 minimizi 1: dl ind
a local minimizer can be NP-hard?. Spuriousloca e Tlatsaddiepoins

Nonconvex problems that

arise from natural physical, geometrical,
or statistical origins typically have

nice structures, in terms of symmetries!

Rotational symmetry Discrete symmetry

2Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987 o T

Qing Qu (EECS, University of Michigan) Nonconvex Optimization
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Nonconvex Optimization in Generic Setting

Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

v,y [[Vf(y) = V@)l < Lilly — z|2 (6)
with benign objectives:
@ convergence to some critical point x, such that: Vf(x,) = 0;

@ the critical point x, is second-order stationary: V2 f(x,) = 0.
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Nonconvex Optimization in Generic Setting

Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

Vo,y  [[Vi(y) = Vi)l < Lifly — |2

with benign objectives:
@ convergence to some critical point x, such that: Vf(x,) = 0;

@ the critical point x, is second-order stationary: V2 f(x,) = 0.

Example: a function f with symmetry only has regular critical points,

while general f could have irregular second-order stationary points:

-w-gw

Minimizer Saddle Maximizer
V20 >0 Amin V3 < 0 V2p <0
Amax V2 > 0
Noncritical Point (V¢ # 0) Critical Points (V¢ = 0)
Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023
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Benign Nonconvexity: “Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin(Hessf) < 0
to escape saddles.
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Benign Nonconvexity: “Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin(Hessf) < 0
to escape saddles.

¢ Efficient (polynomial time) methods: I
Trust region method, analyses in [Sun, Qu, W., '17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, '16]

Noisy (stochastic) gradient descent, [Jin et. al. '17].
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Benign Nonconvexity: “Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin(Hessf) < 0
to escape saddles.

¢ Efficient (polynomial time) methods: I
Trust region method, analyses in [Sun, Qu, W., '17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, '16]

Noisy (stochastic) gradient descent, [Jin et. al. '17].
® Randomly initialized gradient descent ....
Obtains a minimizer almost surely [Lee et. al. '16].
Efficient for matrix completion, dictionary learning, ... not efficient in
general.
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Worst Case vs. Naturally Occurring Strict Saddle Functions

50
5 >
§ 0
=1
o -50
=
k3]
2.-100
[s] 20
-150 0
20
10 0 10, 20
x Xy
1 e
Worst Case Naturally Occuring
[Du, Jin, Lee, Jordan, Poczos, Singh '17] DL, Other sparsification problems
Concentration around stable manifold Dispersion away from stable manifold
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Worst Case vs. Naturally Occurring Strict Saddle Functions

® Red: “slow region” of
small gradient around a
saddle point.

® Green: stable manifold
associated with the
saddle point.

® Black: points that flow
to the slow region.

® | eft: global negative curvature normal to the stable manifold

® Right: positive curvature normal to the stable manifold — randomly
initialized gradient descent is more likely to encounter the slow region.
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Gradient Descent Works for DL and Related Problems

Dispersive structure: Negative curvature | stable manifolds.

W.h.p. in random initialization q(*) ~ uni(S*~!), convergence to a
neighborhood of a minimizer in polynomial iterations. [Gilboa,
Buchanan, W. '18]
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Conclusion

Conclusion and Coming Attractions

For Nonconvex, Sparse and Low-rank problems

® Benign Geometry:

® The only local minimizers are symmetric copies of the ground truth
® There exist negative curvatures breaking symmetry

o Efficient Algorithms:

® gradient descent algorithms always suffice
® proximal, projection, acceleration steps can be transferred over

Thank You! Questions?
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Call for Papers

7

® |EEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

e Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.
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