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The Success of Deep Learning

computer vision

(Credit: Appen. (2019))

natural language processing

(Credit: Andrey Suslov (2023))

gameplay

(Credit: AlphaGo)

autonomous driving

(Credit: Phil Brown (2019))

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 2 / 53



The Trend of Large Models...
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The Challenges & Opportunities in Large Models...

• Tremendous cost of
computation

• Difficult to interpret

• Vulnerable to data corruptions

Theory and principles behind its success?
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Low-Dimensional Structures Are Largely Ignored...

• Sparse Recovery
[Donoho’06, Candes’08]

• Low-rank Matrix Recovery
[Candes’08, Recht’11,
Candes’11]

• (Sparse) Phase Retrieval
[Candes’13, Shechtman’15]

• Super-resolution
[Candes’14,
Fernandez-Granda’16]

• (Sparse) Blind
Deconvolution [Ahmed’14,
Zhang’17, Kuo’20]

• (Convolutional) Dictionary
Learning[Aharon’06,
Sun’16, Bristow’13,
Papyan’17]
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The Emergence of Low-Dim Models in Deep Learning
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Outline of Today’s Course

Lec.1 Low-dimensional Models & Noconvex Optimization
(1hrs)

Lec.2 Low-dimensional Representations in Deep Learning I:
Neural Collapse (1hrs)

Lec.3 Low-dimensional Representations in Deep Learning II:
Law-of-Parsimony in GD (1.5hrs)

Lec.4 Low-dimensional Models for Robust Learning (0.5hrs)
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Outline of Today’s Course

Credit: Han et al.

Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central

Path. ICLR, 2022.

Lec.2 Low-dimensional Representations in Deep Learning I:
Neural Collapse (1hrs)
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Outline of Today’s Course

Lec.3 Low-dimensional Representations in Deep Learning II:
Law-of-Parsimony in GD (1.5hrs)
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Outline of Today’s Course

Lec.4 Low-dimensional Models for Robust Learning (0.5hrs)
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Outline

1 Introduction

2 Symmetry & Geometry for Nonconvex Problems in Practice
Problems with Rotational Symmetry
Problems with Discrete Symmetry

3 Efficient Nonconvex Optimization

4 Conclusion



Introduction

Most of the Machine Learning Problems are Nonconvex...

Figure: Convex vs. Nonconvex Optimization Problems.
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Introduction

Basic Calculus

Critical points or stationary points: gradient vanishes

• convex function: critical point = minimizer

• nonconvex function: not all critical points are minimizers
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Introduction

Basic Calculus

Critical points with non-singular hessian

• local minimizer: hessian is positive definite

• saddle points: hessian has both positive and negative eigenvalues

• local maximizer: hessian is negative definite
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Introduction

Challenges of Nonconvex Optimization – Pessimistic Views

Consider the problem of minimizing
a general nonlinear function:

min
z

φ(z), z ∈ C. (1)

In the worst case, even finding a
local minimizer can be NP-hard1.

Hence, typically people seek
to work with mild guarantees for
nonconvex problems:

1 convergence to some critical point z̄ such that ∇φ(z̄) = 0;

2 or convergence to some local minimizer ∇2φ(z̄) ⪰ 0.

1Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Introduction

Benign Nonconvex Optimization Landscape

General Case Structured Case
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Introduction

Example I: Low-rank Matrix Completion

We observe:

Y
Observed ratings

= PΩ

[
X

Complete ratings

]
.

Matrix completion via nonconvex Burer-Monteiro factorization

min
U ,V

f(U ,V ) =
∑

(i,j)∈Ω

[(UV ∗)i,j − Yi,j ]
2 +

λ

2
∥U∥2F +

λ

2
∥V ∥2F︸ ︷︷ ︸

reg(U ,V )

.
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Introduction

Example II: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Inoisy = A
dictionary

× x
sparse

+ z.
noise

(2)

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y
data

= A
dictionary

X.
sparse

(3)

• Band-limited signals: A = F , the Fourier transform;

• Piecewise smooth signals: A = W , the wavelet transforms;

• Natural images A =? (How to learn A from the data Y ?)
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Introduction

Dictionary Learning

Recovered solutions always obtain the same objective value.
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Introduction

Example: Sparse Blind Deconvolution

Observation Kernel A0 Natural Image 

Observation Y Kernel A0 Activation Map X0

Sparse Blind Deconvolution:
the convolutional motif or sparse
activation signal are unknown:

Y
data

= A
motif

∗ X.
sparse

(4)

• Scientific signals:
activation signals are sparse

• Image deblurring:
natural images are
sparse in the gradient domain
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Introduction

Sparse Blind Deconvolution

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction

Convolutional Dictionary learning

Y
data

=
∑
i

Ai
motif

∗ Xi.
sparse

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction

Opportunities – Optimistic Views

Nonconvex
problems that arise
in machine learning typically
have benign data structures,
in terms of symmetries!

The function φ is invariant
under certain group action:

• low rank matrix recovery: invariant under a continuous rotation:

φ((UΓ,V Γ−1)) = φ((U ,V )), ∀ invertible Γ.

• dictionary learning: invariant under signed permutations:

φ((A,X)) = φ((AΠ,Π∗X)), ∀Π ∈ SP(n).
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Introduction

Nonlinearity and Symmetry

Intrinsic ambiguity against the uniqueness of the solution

• low rank matrix recovery

X = U0V
T
0 = U0ΓΓ

−1V T
0

for any invertible Γ.

• dictionary learning

Y = A0X0 = A0ΠΠ∗X0

for any signed permutation Π.

• blind deconvolution

y = a0 ∗ x0 = Sτ [a0] ∗ S−τ [x0]

for any signed shift τ .
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Introduction

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on Rn. A function φ : Rn → Rn′
is G-symmetric

if for all z ∈ Rn, g ∈ G, φ(g ◦ z) = φ(z).

Most symmetric objective functions that
arise in structured signal recovery do not
have spurious local minimizers or flat
saddles.

Slogan 1: the (only!) local minimizers are symmetric ver-
sions of the ground truth.
Slogan 2: any local critical point has negative curvature
in directions that break symmetry.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Problems with Rotational Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery
Goal: Given Y = A(X), recover low rank matrix X = U0V0

• Convex formulation:

min
X∈Rm×n

∥X∥⋆ s.t. Y = A(X)

• Nonconvex formulation:

min
U∈Rm×r,V ∈Rn×r

∥∥Y −A(UV T )
∥∥2
F
+ reg(U ,V )
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

min
U ,V

1

2

∥∥Y −A(UV T )
∥∥2
F
+ reg(U ,V )

Inherent Symmetry:

X = U0V
T
0 = U0ΓΓ

−1V T
0

for any invertible Γ ∈ Rr×r.

• Are
(
U0Γ,V0Γ

−1
)
the only local solutions?

• Does there exist any flat stationary point?
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Simple Setting: Rank-1 Symmetric Matrix

• Simplifications:
• Y = A(X) = X
• X = U0U

T
0 is symmetric and rank-1

X = u0u
T
0 = (−u0Q)(−QTuT

0 )

the signed rotational symmetry.

• Nonconvex formulation:

min
u

ϕ(u)
.
=

1

4

∥∥X − uuT
∥∥2
F
+ λ ∥u∥22︸ ︷︷ ︸

const
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

min
u

ϕ(u)
.
=

1

4

∥∥X − uuT
∥∥2
F

• Critical points have zero gradient

∇ϕ = (uuT −X)u

= ∥u∥22 u−Xu

= 0

• Therefore, critical points must be one of the following
• u = ±Qu0

• u = 0
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

min
u

ϕ(u)
.
=

1

4

∥∥X − uuT
∥∥2
F

with the second-order derivative

∇2ϕ = 2uuT + ∥u∥22 I −X.

Then the stationary points can be grouped as

• Local minimizer u = ±Qu0:

∇2ϕ = uuT + ∥u∥22 I ⪰ 0

• Maximizer u = 0

∇2ϕ = −X < 0.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

• Symmetric low rank matrix recovery:

min
U

ϕ(u)
.
=

1

4

∥∥X −UUT
∥∥2
F
.

• General low rank matrix recovery:

min
U ,V

ϕ(u)
.
=

1

2

∥∥X −UV T
∥∥2
F
+ λ ∥U∥2F + λ ∥V ∥2F .

Local minimizers: are ground truth U0 and V0 up to rotation;
Negative curvature: between multiple local minimizers.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Problems with Discrete Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Dictionary Learning

Goal: Given dataset Y , find the optimal dictionary A that renders the
sparsest coefficient X

min
A,X

∥X∥1 s.t. Y = AX.

In presence of noise, the optimization problem can be rewritten as

min
A,X

1

2
∥Y −AX∥2F + λ ∥X∥1 .

Inherent Symmetry:

Y = A0ΓΓ
∗X0,

for any signed permutation matrix Γ.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning
• Input: matrix Y which is the product of an orthogonal matrix A0

(called a dictionary) and a sparse matrix X0:

Y = A0X0, A0A
∗
0 = I,X0 sparse.

• Optimization formulation:

min
A,X

∥X∥1 s.t. Y = AX, AA∗ = I.

• Given the constraint, X is uniquely defined in terms of A

X = A∗AX = A∗Y .

• Equivalent formulation:

min
A∈O(n)

∥A∗Y ∥1 .
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning

Instead of aiming to solve the entire matrix A = [a1, . . . ,an] at once via

min
A∈O(n)

∥A∗Y ∥1 .

A simpler model problem solves for the columns ai one at a time

min
∥a∥2=1

∥a∗Y ∥1 .

Stationary Points:

• a = ±ai, then the Hessian is positive definite

• a =
∑

i∈I ± 1√
|I|
ai, there exist negative curvatures alone ai(i ∈ I)
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning — Geometry

Local minimizers are ground truth ai or −ai.
Negative curvature between multiple local minimizers.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Short-and-Sparse Blind Deconvolution

Goal: Given convolutional data y, find the short signal a and the sparse
signal x such that y = a ∗ x.

Inherent Symmetry:

y = a0 ∗ x0 = αsl[a0] ∗
1

α
s−l[x0]

for any shift l and nonzero scaling.

The practical optimization problem can be written as

min
∥a∥2F=1,x

1
2 ∥y − a ∗ x∥2F + λ ∥x∥1 .
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Inherent Symmetry:

y = a0 ∗ x0 = αsl[a0] ∗
1

α
s−l[x0]

for any shift l and nonzero scaling.

The practical optimization problem can be written as

min
∥a∥2F=1,x

1
2 ∥y − a ∗ x∥2F + λ ∥x∥1 .
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Near One Shift

Sp−1 ∩ {a ∈ Sp−1 | ∥a− sℓ[a0]∥2 ≤ r}

sℓ[a0]

φρ(a)

Objective function is strongly convex near a shift sℓ[a0] of the ground
truth.
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Objective Function – Linear Span of Two Shifts

sℓ2 [a0]

sℓ1 [a0]

S{ℓ1,ℓ2}

Subspace S{ℓ1,ℓ2} = {αℓ1sℓ1 [a0] + αℓ2sℓ2 [a0] | αℓ1 , αℓ2 ∈ R}.
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Objective Function – Linear Span of Two Shifts

sℓ2 [a0]

sℓ1 [a0]

S{ℓ1,ℓ2}

S{ℓ1,ℓ2} ∩ Sp−1

φρ(a)

Local minimizers are near signed shifts ±sℓ[a0].
Negative curvature between two shifts sℓ1 [a0], sℓ2 [a0].
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Objective Function – Multiple Shifts

S{ℓ1,ℓ2,ℓ3} ∩ Sp−1

sℓ1 [a0]

sℓ2 [a0]sℓ3 [a0]

φρ(a)

Objective φρ over the linear span Sℓ1,ℓ2,ℓ3 = {∑3
i=1 αℓisℓi [a0]}

Local minimizers are near signed shifts ±sℓi [a0].
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Symmetry and Nonconvexity

Slogan 1: the (only!) local minimizers are symmetric ver-
sions of the ground truth.
Slogan 2: any local critical point has negative curvature
in directions that break symmetry.
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Efficient Nonconvex Optimization

Nonconvex Optimization in Generic Setting

Consider the problem of minimizing
a general nonconvex function:

min
x

f(x), x ∈ C. (5)

In the worst case, even finding
a local minimizer can be NP-hard2.

Nonconvex problems that
arise from natural physical, geometrical,
or statistical origins typically have
nice structures, in terms of symmetries!

2Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Efficient Nonconvex Optimization

Nonconvex Optimization in Generic Setting
Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

∀x,y ∥∇f(y)−∇f(x)∥2 ≤ L1∥y − x∥2 (6)

with benign objectives:

1 convergence to some critical point x⋆ such that: ∇f(x⋆) = 0;

2 the critical point x⋆ is second-order stationary: ∇2f(x⋆) ⪰ 0.

Example: a function f with symmetry only has regular critical points,
while general f could have irregular second-order stationary points:
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Efficient Nonconvex Optimization

Benign Nonconvexity: “Any Reasonable Algorithm” Works

Key issue: using negative curvature
λmin(Hessf) < 0

to escape saddles.
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. .

• Efficient (polynomial time) methods:
Trust region method, analyses in [Sun, Qu, W., ’17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, ’16]

Noisy (stochastic) gradient descent, [Jin et. al. ’17].

• Randomly initialized gradient descent ....
Obtains a minimizer almost surely [Lee et. al. ’16].

Efficient for matrix completion, dictionary learning, . . . not efficient in

general.
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Efficient Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions
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(a) Contour plot of the objective
function and tube defined in 2D.

(b) Trajectory of gradient descent
in the tube for d = 3.

(c) Octopus defined in 2D.

Figure 2: Graphical illustrations of our counter-example with ⌧ = e. The blue points are saddle
points and the red point is the minimum. The pink line is the trajectory of gradient descent.
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Figure 3: Performance of GD and PGD on our counter-example with d = 5.
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Figure 4: Performance of GD and PGD on our counter-example with d = 10

Extension: from octopus to Rd. Up to now we have constructed a function defined on a closed
subset of Rd. The last step is to extend this function to the entire Euclidean space. Here we apply the
classical Whitney Extension Theorem (Theorem B.3) to finish our construction. We remark that the
Whitney extension may lead to more stationary points. However, we will demonstrate in the proof
that GD and PGD stay within the interior of “octopus” defined above, and hence cannot converge to
any other stationary point.

5 Experiments

In this section we use simulations to verify our theoretical findings. The objective function is defined
in (14) and (15) in the Appendix. In Figures 3 and Figure 4, GD stands for gradient descent and
PGD stands for Algorithm 1. For both GD and PGD we let the stepsize ⌘ = 1

4L . For PGD, we
choose tthres = 1, gthres = �e

100 and r = e
100 . In Figure 3 we fix dimension d = 5 and vary L as

considered in Section 4.1; similarly in Figure 4 we choose d = 10 and vary L. First notice that in
all experiments, PGD converges faster than GD as suggested by our theorems. Second, observe the
“horizontal" segment in each plot represents the number of iterations to escape a saddle point. For
GD the length of the segment grows at a fixed rate, which coincides with the result mentioned at the
beginning for Section 4.1 (that the number of iterations to escape a saddle point increase at each time
with a multiplicative factor L+�

� ). This phenomenon is also verified in the figures by the fact that as
the ratio L+�

� becomes larger, the rate of growth of the number of iterations to escape increases. On
the other hand, the number of iterations for PGD to escape is approximately constant (⇠ 1

⌘� ).

8

Worst Case
[Du, Jin, Lee, Jordan, Poczos, Singh ’17]
Concentration around stable manifold
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Naturally Occuring
DL, Other sparsification problems

Dispersion away from stable manifold
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Efficient Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions

• Red: “slow region” of
small gradient around a
saddle point.

• Green: stable manifold
associated with the
saddle point.

• Black: points that flow
to the slow region.

• Left: global negative curvature normal to the stable manifold

• Right: positive curvature normal to the stable manifold – randomly
initialized gradient descent is more likely to encounter the slow region.

.

Qing Qu (EECS, University of Michigan) Nonconvex Optimization June 10th, 2023 49 / 53



Efficient Nonconvex Optimization

Gradient Descent Works for DL and Related Problems
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Dispersive structure: Negative curvature ⊥ stable manifolds.

W.h.p. in random initialization q(0) ∼ uni(Sn−1), convergence to a
neighborhood of a minimizer in polynomial iterations. [Gilboa,
Buchanan, W. ’18]
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Conclusion

Conclusion and Coming Attractions

For Nonconvex, Sparse and Low-rank problems

• Benign Geometry:
• The only local minimizers are symmetric copies of the ground truth
• There exist negative curvatures breaking symmetry

• Efficient Algorithms:
• gradient descent algorithms always suffice
• proximal, projection, acceleration steps can be transferred over

Thank You! Questions?
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Call for Papers

• IEEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

• Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.
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