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What Representations are DNNs Designed to Learn?

• Wishful Design: DNNs learn rich representations across different
layers.

• Reality: Is it really the case in the practice of modern DNNs?
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Low-Dimensional Representation: Neural Collapse (NC)

Multi-Class Image Classification Problem
• Goal: Learn a deep network predictor from a labelled training dataset

{(x(i),y(i)); i = 1, · · · , n}.

• Training Labels: k = 1, . . . ,K
• K = 10 classes (MNIST, CIFAR10, etc)
• K = 1000 classes (ImageNet)

• For simplicity, we assume balanced dataset where each class has n
training samples.1

1If not, we can use data augmentation to make them balanced
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Low-Dimensional Representation: Neural Collapse (NC)

Deep Neural Network Classifiers

• A vanilla deep network:

fΘ(x) = WL︸︷︷︸
linear classifer W

σ (WL−1 · · ·σ(W1x+ b1) + bL−1)︸ ︷︷ ︸
feature ϕθ(x)=:h

+bL

• Progressive linear separation through nonlinear layers:
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Low-Dimensional Representation: Neural Collapse (NC)

Deep Neural Network Classifiers

• Training a deep neural network:

min
θ,W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Wϕθ(xk,i) + b,yk

)︸ ︷︷ ︸
cross-entropy (CE) loss

+λ ∥(θ,W , b)∥2F︸ ︷︷ ︸
weight decay
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Low-Dimensional Representation: Neural Collapse (NC)

Deep Neural Network Classifiers
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse in Multi-Class Classification

• Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

• Precise mathematical structure within the features and classifier
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse in Multi-Class Classification

Credit: Han et al. Neural Collapse Under MSE Loss: Proximity to and

Dynamics on the Central Path. ICLR, 2022.
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

• NC1: Within-Class Variability Collapse: features of each class
collapse to class-mean with zero variability:

k-th class, i-th sample : hk,i → hk,
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant

⟨hk,hk′⟩
∥hk∥∥hk′∥

→

{
1, k = k′

− 1
K−1 , k ̸= k′
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant

H⊤H ∼ IK − 1

K
1K1⊤K ,

H =
[
h1 · · · hK

]
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

• NC3: Convergence to Self-Duality: the last-layer classifiers are
perfectly matched with the class-means of features

wk

∥wk∥
→ hk

∥hk∥
,

where wk represents the k-th row of W .
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Low-Dimensional Representation: Neural Collapse (NC)

Understanding the Prevalence of Neural Collapse

Question. Given the prevalence of Neural Collapse across datasets
and network architectures, why would such a phenomenon happen

in training overparameterized networks?
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Understanding NC from Optimization

Dealing with a Highly Nonconvex Problem

The training problem is highly nonconvex [Li et al.’18]:

min
θ′,W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Wϕθ′(xk,i) + b,yk

)
+ λ∥(θ′,W , b)∥2F ,

due to the fact that the network

fΘ(x) = WL︸︷︷︸
linear classifer W

σ (WL−1 · · ·σ(W1x+ b1) + bL−1)︸ ︷︷ ︸
feature ϕθ(x)=:h

+bL

• Nonlinear interaction across layers.

• Nonlinear activation functions.
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

Assumption. We treat H =
[
h1,1 · · · hK,n

]
as a free optimiza-

tion variable, ignoring the constraint hϕθ(x).
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Understanding NC from Optimization

The Trend of Large Models...
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[
h1,1 · · · hK,n

]
as a free optimiza-

tion variable, ignoring the constraint hϕθ(x).

• Validity: modern network are highly overparameterized, that they are
universal approximators [Shaham’18];

• State-of-the-Art: also called Layer-Peeled Model [Fang’21],
existing work [E’20, Lu’20, Mixon’20, Fang’21] only studied global
optimality conditions;
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Understanding NC from Optimization

Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with random labels, MLP with varying network widths

• Validity of unconstrained features model: Learn NC last-layer
features and classifiers for any inputs

• The network memorizes training data in a very special way: NC

• We observe similar results on random inputs (random pixels)
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

min
W ,H,b

1

Kn

K∑
k=1

n∑
i=1

LCE(Whk,i + b,yk) +
λW

2
∥W ∥2F +

λH

2
∥H∥2F +

λb

2
∥b∥22

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W ,H). Then

• Global optimality: Any global solution ({H⋆,W ⋆, b⋆}) obeys
Neural Collapse, with b⋆ = 0 and

h⋆
k,i = h

⋆
k︸ ︷︷ ︸

NC1

,
⟨h⋆

k,h
⋆
k′⟩

∥h⋆
k∥∥h

⋆
k′∥

=

{
1, k = k′

− 1
K−1 , k ̸= k′︸ ︷︷ ︸

NC2

,
wk⋆

∥wk⋆∥
=

h
⋆
k

∥h⋆
k∥︸ ︷︷ ︸

NC3

Qing Qu (EECS, University of Michigan) Low-dimensional Representations June 10th, 2023 19 / 50



Understanding NC from Optimization

Geometric Analysis of Global Landscape

[Lu et al.’20] study the following one-example-per class model

min
{hk}

1

K

K∑
k=1

LCE

(
hk,yk

)
, s.t.∥hk∥2 = 1

[E et al.’20, Fang et al.’21, Gral et al.’21, etc.] study constrained formulation

min
{hk,i},W

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i,yk

)
, s.t. ∥W ∥F ≤ 1, ∥hk,i∥2 ≤ 1

These work show that any global solution has NC, but

• What about local minima/saddle points?

• The constrained formulations are not aligned with practice
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Understanding NC from Optimization

Global Optimitality Does Not Imply Efficient Optimization

Our loss is still highly nonconvex:

min
W ,H,b

1

Kn

K∑
k=1

n∑
i=1

LCE(Whk,i + b,yk) +
λW

2
∥W ∥2F +

λH

2
∥H∥2F +

λb

2
∥b∥22

Qing Qu (EECS, University of Michigan) Low-dimensional Representations June 10th, 2023 21 / 50



Understanding NC from Optimization

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W ,H). Then

• Global optimality: Any global solution ({H⋆,W ⋆, b⋆}) obeys
Neural Collapse.

• Benign global landscape: The objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W ,H). Then

• Global optimality: Any global solution ({H⋆,W ⋆, b⋆}) obeys
Neural Collapse.

• Benign global landscape: The objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.

Message. Iterative algorithms such as (stochastic) gradient
descent will always learn Neural Collapse features and classifiers.
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Understanding NC from Optimization

Implications of Our Results

• A feature learing perspective.
• Top down: unconstrained feature model, representation learning, but

no input information.
• Bottom up: shallow network, strong assumptions, far from practice.

• Connections to empirical phenomena.
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Understanding NC from Optimization

Implications of Our Results

min
W ,H,b

1

Kn

K∑
k=1

n∑
i=1

LCE(Whk,i + b,yk) +
λW

2
∥W ∥2F +

λH

2
∥H∥2F +

λb

2
∥b∥22

variational form: ∥Z∥∗ = min
Z=WH

1

2
(∥W ∥2F + ∥H∥2F )

• Closely relates to low-rank matrix factorization problems [Burer et
al’03, Bhojanapalli et al’16, Ge et al’16, Zhu et al’18,Li et al’19, Chi
et al’19]

• However, we have more structured observation

Y =

1 · · · 1
1 · · · 1

1 · · · 1

 = IK ⊗ 1⊤n
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Understanding NC from Optimization

Experiments on Practical Neural Networks
Conduct experiments with practical networks to verify our findings:

Use a Residual Neural Network
(ResNet) on CIFAR-10 Dataset:

• K = 10 classes

• 50K training images

• 10K testing images
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Understanding NC from Optimization

Experiments: NC is Algorithm Independent

ResNet18 on CIFAR-10 with different training algorithms

• The smaller the quantities, the severer NC

• NC is prevalent across different training algorithms
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

NC is prevalent, and classifier always converges to a Simplex ETF

• Implication 1: No need to learn the
classifier [Hoffer et al. 2018]

- Just fix it as a Simplex ETF
- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!

• Implication 2: No need of large feature
dimension d

- Just use feature dim. d = #class K (e.g.,
d = 10 for CIFAR-10)

- Further saves 21% and 4.5% parameters for
ResNet18 and ResNet50!
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

ResNet50 on CIFAR-10 with different settings

• Learned classifier (default) vs. fixed classifier as a simplex ETF

• Feature dim d = 2048 (default) vs. d = 10

• Training with small dimensional features and fixed classifiers achieves
on-par performance with large dimensional features and learned
classifiers.
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Prevalence of NC under Different Training Scenarios

Is Cross-entropy Loss Essential?

Question. Is cross-entropy loss essential to neural collapse?

• We can measure the mismatch between the network output and the
one-hot label in many ways.

• Various losses and tricks (e.g., label smoothing, focal loss) have been
proposed to improve network training and performance2

2He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR’19.
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Prevalence of NC under Different Training Scenarios

Example I: Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples3

3Lin et al., Focal Loss for Dense Object Detection, CVPR’18.
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Prevalence of NC under Different Training Scenarios

Example II: Label Smoothing (LS)
Label smoothing replaces the hard label by a soft label4

4Szegedy et al., Rethinking the inception architecture for computer vision, CVPR’16.
Muller, Kornblith, Hinton, When does label smoothing help?, NeurIPS’19.
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Prevalence of NC under Different Training Scenarios

Example III: Mean-squared Error (MSE) Loss

Compared with CE, rescaled MSE loss produces on par results for
computer vision & NLP tasks.5

5Hui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in
classification tasks, ICLR 2021.
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Prevalence of NC under Different Training Scenarios

Example III: Mean-squared Error (MSE) Loss

min
W ,H,b

1

2N
∥Ω⊙1/2

α ⊙
(
WH + b1⊤ −MY

)
∥2F +

λW

2
∥W ∥2F +

λH

2
∥H∥2F +

λb

2
∥b∥22.
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Prevalence of NC under Different Training Scenarios

Example III: Mean-squared Error (MSE) Loss

• Error bound condition for vanilla MSE loss:

dist((W ,H, b),X ) ≤ κ∥∇F (W ,H, b)∥F

for any (W ,H, b) with dist((W ,H, b),X ) ≤ δ.

• Local linear convergence of GD:
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Prevalence of NC under Different Training Scenarios

Which Loss is the Best to Use?

• The performance is also affected by the choice of network
architecture, training iterations, dataset, etc.
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Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective

Theorem (Informal, Zhou et al.’22)

Under the unconstrained feature model, with feature dim.
d ≥ #class K − 1, for all the one-hot labeling based losses (e.g., CE, FL,
LS, MSE),

• NC are the only global solutions for all losses.

• All losses have benign global landscape w.r.t. (W ,H, b)

Implication for practical networks If network is large enough and
trained longer enough

• All losses lead to largely identical features on training
data—NC phenomena

• All losses lead to largely identical performance on test data
(experiments in the following slides)
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Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

Observation: If network is large enough and trained longer enough,
all losses lead to largely identical NC features on training data.
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Prevalence of NC under Different Training Scenarios

All Losses Are Almost Created Equal
ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

• Right top corners not only have better performance, but also have
smaller variance than left bottom corners

Observation: If network is large enough and trained longer enough,
all losses lead to largely identical performance on test data.
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

min
W ,H

1

N

K∑
k=1

n∑
i=1

L (Whk,i,yk)

s.t. ∥wk∥2 = τ, ∥hk,i∥2 = 1, hk,i = ϕθ(xk,i), ∀ i ∈ [n], ∀ k ∈ [K].

• Improve the quality of
learned features with larger
class separation [Yu et al.,
2020, Wang and Isola, 2020]

• Improve test performance in
practice [Graf et al., 2021,
Liu et al., 2021]
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

• Under the unconstrained feature model, a similar global landscape
result can be shown for:

min
W ,H

1

N

K∑
k=1

n∑
i=1

LCE (Whk,i,yk)

s.t. ∥wk∥2 = τ, ∥hk,i∥2 = 1, ∀ i ∈ [n], ∀ k ∈ [K].

• More advanced analysis based upon Riemannian optimization tools.
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Prevalence of NC under Different Training Scenarios

Experimental Results with Feature Normalization

Faster training/feature collapse with RseNet on CIFAR100 with feature
normalization
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Prevalence of NC under Different Training Scenarios

Neural Collapse for Multi-Label Learning
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Prevalence of NC under Different Training Scenarios

Multi-label Learning Setup
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Prevalence of NC under Different Training Scenarios

Last-Layer Geometry of Multi-label Learning

• Neural collapse in multi-label learning with 3 classes where the colors
denote the class label;

• Respectively, left/mid/right panel shows representations during
early/mid/late phase of training unconstrained feature model.
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Prevalence of NC under Different Training Scenarios

Multilabel-MNIST Synthetic Example

• Experiments with simple MLP architectures.

• The ETF structure still holds for data imbalancedness.
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Prevalence of NC under Different Training Scenarios

Neural Collapse for Multi-Label Learning
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Conclusion and Coming Attractions

Learning common deep networks for low-dim structure

• Low-dimensional features: understand low-dim. features (sparse
and neural collapse (NC)) learned in deep classifiers trained with
one-hot labeling based losses in generic settings

Thank You! Questions?



Call for Papers

• IEEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

• Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.
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