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What Representations are DNNs Designed to Learn?
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What Representations are DNNs Designed to Learn?
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® Wishful Design: DNNs learn rich representations across different
layers.
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What Representations are DNNs Designed to Learn?

i ; Linearly
features [ featnes [ features [ Separave [~
classifier

VGG-16 Convi_1 VGG-16 Conv3_2

® Wishful Design: DNNs learn rich representations across different
layers.

® Reality: Is it really the case in the practice of modern DNNs?
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@ Low-Dimensional Representation: Neural Collapse (NC)



Low-Dimensional Representation: Neural Collapse (NC)

Multi-Class Image Classification Problem

® Goal: Learn a deep network predictor from a labelled training dataset
{(x@D,y®); i=1,--- ,n}.

Y not, we can use data augmentation to make them balanced
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Low-Dimensional Representation: Neural Collapse (NC)

Multi-Class Image Classification Problem

® Goal: Learn a deep network predictor from a labelled training dataset
(@@, y0) =1, ,n}.

® Training Labels: k=1,... K

® K =10 classes (MNIST, CIFAR10, etc)
® K = 1000 classes (ImageNet)
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Neural network :
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Data in the input space
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One-hot labeling vectors in ]RK

Y not, we can use data augmentation to make them balanced
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Low-Dimensional Representation: Neural Collapse (NC)

Multi-Class Image Classification Problem

® Goal: Learn a deep network predictor from a labelled training dataset
{(@D,yD); i =1,--- ,n}.

® Training Labels: k=1,... K

® K =10 classes (MNIST, CIFAR10, etc)
® K = 1000 classes (ImageNet)

B!
&: = T s
'+ _ %’1 ¥ " Cat DOg Truck
L a2 L)
]

o

: 0
T2,1 = 1
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? Neural network :
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Data in the input space One-hot labeling vectors in RE

® For simplicity, we assume balanced dataset where each class has n
training samples.!

Y not, we can use data augmentation to make them balanced
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Low-Dimensional Representation: Neural Collapse (NC)

Deep Neural Network Classifiers

® A vanilla deep network:

fe(z) = Wi 0 (Wr1---o(Wix+b1)+br1)+b
linear classifer W feature:b;((l:)::h
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Low-Dimensional Representation: Neural Collapse (NC)

Deep Neural Network Classifiers

® A vanilla deep network:

fe(z) = Wi 0 (Wr1---o(Wix+b1)+br1)+b
linear classifer W feature:b;(a:)::h

® Progressive linear separation through nonlinear layers:

¢ QO o
N"&{O‘Q.o.

all possible data points
from two classes; not a
single input!
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Low-Dimensional Representation: Neural Collapse (NC)

Deep Neural Network Classifiers

Input Feature/representation Output
s (Our focus) §
U5 .
. és.
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(e.g., convolution layers)

® Training a deep neural network:

K n
. 1 2
Jun, oo kg—l ;_1 Lcg (W dg(xy;) + b, yk)/‘i‘/\ (6, W,b)]%

cross-entropy (CE) loss weight decay
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Low-Dimensional Representation: Neural Collapse (NC)

Deep Neural Network Classifiers

Input Feature/representation Output
. (Our focus) §
_

y
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse in Multi-Class Classification

Prevalence of neural collapse during the terminal P
phase of deep learning training @

Vardan Papyan, 2 X. Y. Han, and David L. Donoho ® &
+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663, first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and
Stéphane Mallat)

® Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

® Precise mathematical structure within the features and classifier
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse in Multi-Class Classification

class 1 simplex ETF vertex

class 1 classifier

class 3 simplex ETF vertex ¢ l class 2 feature

Credit: Han et al. Neural Collapse Under MSE Loss: Proximity to and
Dynamics on the Central Path. ICLR, 2022.
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

e NC1: Within-Class Variability Collapse: features of each class
collapse to class-mean with zero variability:

k-th class, i-th sample : hy; — hy,
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Neural Collapse: Symmetry and Structures

e NC1: Within-Class Variability Collapse: features of each class
collapse to class-mean with zero variability:

k-th class, i-th sample : hy; — hy,
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

® NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant

<Ekvﬁk’> N 17 k=F
[l | —, kAK
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

® NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant
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Low-Dimensional Representation: Neural Collapse (NC)

Neural Collapse: Symmetry and Structures

® NC3: Convergence to Self-Duality: the last-layer classifiers are
perfectly matched with the class-means of features

hs

wk Ek
ATIAT — —,
[wk]| [l hl

where w” represents the k-th row of W.
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Low-Dimensional Representation: Neural Collapse (NC)

Understanding the Prevalence of Neural Collapse

Question. Given the prevalence of Neural Collapse across datasets
and network architectures, why would such a phenomenon happen
in training overparameterized networks?
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@® Understanding NC from Optimization



Dealing with a Highly Nonconvex Problem

The training problem is highly nonconvex [Li et al.'18]:
K
min —— ZZ£CE W g (@) + b, yr) + All(0', W, b)|| %,

oWhb K
nk 11:=1

due to the fact that the network

f@(a:) = Wi, U(WL_l ---U(Wlm—i-bl) +bL_1)+bL

linear classifer W feature ge(m):;h

® Nonlinear interaction across layers.

e Nonlinear activation functions.
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

Input Feature/representation Output
et (Our focus) §
| ﬁf‘; | N . :
‘\/ . a:" \\ feature mapping ¢ (w)‘ . linear classifier
\ \ e h —eee—> W h + b
- & {W,b}

Y N

N

(e.g., convolution layers)

Assumption. We treat H = [hy; -+ hg,| as a free optimiza-
tion variable, ignoring the constraint hog(x).
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The Trend of Large Models...
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Figure: Accuracy vs. model size for image classification on ImageNet dataset

~23 million  >> ~1 million

(# Parameters in ResNet-50) (# Samples in ImageNet)

In principle, deep network can fit any training labels!
(i.e., not only clean, but also corrupted labels)
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

i
i
—

h

linear classifier
{W, b}

Wh+b

Assumption. We treat H = [hl,l hK,n] as a free optimiza-
tion variable, ignoring the constraint hog(x).
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

H
;L linear classifier Wh+b
{W.b}
Assumption. We treat H = [hl,l hK’n] as a free optimiza-

tion variable, ignoring the constraint hog(x).

e Validity: modern network are highly overparameterized, that they are
universal approximators [Shaham'18];
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

—
;L linear classifier Whb
{W.b}
Assumption. We treat H = [hl,l hK’n] as a free optimiza-

tion variable, ignoring the constraint hog(x).

e Validity: modern network are highly overparameterized, that they are
universal approximators [Shaham'18];

¢ State-of-the-Art: also called Layer-Peeled Model [Fang'21],
existing work [E'20, Lu'20, Mixon'20, Fang'21] only studied global
optimality conditions;
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Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with random labels, MLP with varying network widths

width = 8 - —o— width =8 —e— width = 8
I width = 16 10 o~ width = 16 o~ width=16 -
E width = 32 i\ 08 Oupens T width = 32 —#— width = 32
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0 160 200 300 400 500 °% 100 200 300 400 500 % 100 200 300 400 500
Epoch Epoch Epoch
Within-Class Variability (NC1) Self-Duality Collapse (NC2) Training Error
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Understanding NC from Optimization

Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with

NC; (log scale)

0 100

Within-Class Variability (NC1)

width = 8
width = 16
width = 32
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width = 256
width = 512 -
width = 1024
width = 2048
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Epoch

Fidttets

random labels, MLP with varying network widths
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Self-Duality Collapse (NC2)
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P S e
200 300 400 500

Epoch

Training Error

® Validity of unconstrained features model: Learn NC last-layer
features and classifiers for any inputs

® The network memorizes training data in a very special way: NC

® We observe similar results on random inputs (random pixels)
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Geometric Analysis of Global Landscape

K n

N on LSS Lon(Whis + b ) + —nwnp + —||H||F + —||b||2
k=1 1i1=1

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.'21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W, H). Then

¢ Global optimality: Any global solution ({H*, W*,b*}) obeys
Neural Collapse, with b* = 0 and

R oy D 1, k=K  wk h,
k,': k — " = _— =
e T R O S A ]
—— ——

NC2 NC3
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

[Lu et al.’20] study the following one-example-per class model

gllm— ZECE (P, yr), stl[hgllz =1
k:

[E et al.’20, Fang et al.’21, Gral et al.’21, etc.] study constrained formulation

K

ZZECE (Whii,yr), st [Wlep <1, [hgllz <1

{hki}WKnk 14=1

These work show that any global solution has NC, but
® What about local minima/saddle points?

® The constrained formulations are not aligned with practice
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Understanding NC from Optimization

Global Optimitality Does Not Imply Efficient Optimization
“bad” local minima

“flat” saddle point

v
laca.l mlmma

global minima

Our loss is still highly nonconvex

1 K

WHbKn

v
“flat” saddle

ZZLCE (Why; +b,yp) + —||W||F+
=11:=1
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.

Consider the above nonconvex optimization problem w.r.t. (W H). Then

¢ Global optimality: Any global solution ({H*, W* ,b*}) obeys
Neural Collapse.

* Benign global landscape: The objective function (i) has no

spurious local minima, and (ii) any non-global critical point is a strict

saddle with negative curvature.

strict saddle

_#m(has no NC)

| .
all local minima obey NC  negative curvature

7 v v
global minima “flat” saddle
General nonconvex problems Our training problem
Qing Qu (EECS, University of Michigan) Low-dimensional Representations June 10th, 2023
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W, H). Then
¢ Global optimality: Any global solution ({H*, W*,b*}) obeys
Neural Collapse.
¢ Benign global landscape: The objective function (i) has no

spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.

Message. lterative algorithms such as (stochastic) gradient
descent will always learn Neural Collapse features and classifiers.
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Understanding NC from Optimization

Implications of Our Results

strict saddle

Ahas no NC)

I ’
all local minima obey NC ~ Nnegative curvature

v v V
global minima “flat” saddle
General nonconvex problems Our training problem

® A feature learing perspective.

® Top down: unconstrained feature model, representation learning, but
no input information.
® Bottom up: shallow network, strong assumptions, far from practice.

Qing Qu (EECS, University of Michigan) Low-dimensional Representations June 10th, 2023 24 /50



Understanding NC from Optimization

Implications of Our Results

strict saddle

_has no NC)

d ! v all local minima obey NC ~ Nnegative curvature
global minima “flat” saddle
General nonconvex problems Our training problem

® A feature learing perspective.

® Top down: unconstrained feature model, representation learning, but
no input information.
® Bottom up: shallow network, strong assumptions, far from practice.

® Connections to empirical phenomena.
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Understanding NC from Optimization

Implications of Our Results

n

K
. 1 b
W{,I}}_%bm;Z;LCE(thz+b yk)+_||W||F+_”H||F+ ||b||§

variational form: || Z], = val‘gl (HWHF + | H|%)

e Closely relates to low-rank matrix factorization problems [Burer et
al'03, Bhojanapalli et al'16, Ge et al’l6, Zhu et al'18,Li et al'19, Chi
et al'19]
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Understanding NC from Optimization

Implications of Our Results

n

K
. 1 b
ﬁgbmggﬁw(wmﬁb yk)+_||W||F+_”H||F+ ||b||§

variational form: || Z], = val‘gl (HWHF + | H|%)

e Closely relates to low-rank matrix factorization problems [Burer et
al'03, Bhojanapalli et al'16, Ge et al’l6, Zhu et al'18,Li et al'19, Chi
et al'19]

® However, we have more structured observation

1 -+ 1
Y = 1 -1 =Ix®1)
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Understanding NC from Optimization

Experiments on Practical Neural Networks
Conduct experiments with practical networks to verify our findings:

Use a Residual Neural Network

(ResNet) on CIFAR-10 Dataset:

e K =10 classes
® 50K training images
® 10K testing images

—

3x3 conv, 64

Input
3x3 conv, 64

3
H
g
5

Qing Qu (EECS, University of Michigan)

g
2

3x3 conv, 128

———¢

3x3 conv, 256, 12

3x3 conv, 256

Low-dimensional Representations
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Experiments: NC is Algorithm Independent

ResNet18 on CIFAR-10 with different training algorithms

6 0.8 1.0
—%— SGD —%— SGD —%— SGD
—e— Adam 0.6 —e— Adam 0.8 —e— Adam
2 —#— LBFGS ! —=— LBFGS —=— LBFGS
= N «0.6
2 goe H
2 0.4
0.2
§ 0.2
0 0.0 0.0
50 100 150 200 0 50 100 150 200 o 50 100 150 200
Epoch Epoch Epoch

Within-Class Variability (NC1) Between-Class Separation (NC2) Self-Duality Collapse (NC3)

® The smaller the quantities, the severer NC

® NC is prevalent across different training algorithms
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Exploit NC for Improving Training & Memory

NC is prevalent, and classifier always converges to a Simplex ETF

¢ Implication 1: No need to learn the
classifier [Hoffer et al. 2018]

- Just fix it as a Simplex ETF
- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!
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Exploit NC for Improving Training & Memory

NC is prevalent, and classifier always converges to a Simplex ETF

¢ Implication 1: No need to learn the
classifier [Hoffer et al. 2018]
- Just fix it as a Simplex ETF
- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!
¢ |Implication 2: No need of large feature
dimension d

- Just use feature dim. d = #class K (e.g.,
d = 10 for CIFAR-10)

- Further saves 21% and 4.5% parameters for
ResNet18 and ResNet50!
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory
ResNet50 on CIFAR-10 with different settings

¢ Learned classifier (default) vs. fixed classifier as a simplex ETF
® Feature dim d = 2048 (default) vs. d = 10
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

ResNet50 on CIFAR-10 with different settings
¢ Learned classifier (default) vs. fixed classifier as a simplex ETF
® Feature dim d = 2048 (default) vs. d = 10

1.2 100 100
[ ¥~ learned classifier, d=2048 > 20
10| —e— fixed classifier, d=2048 g 0
0.g]| —= learned classifier, d=10 5 80 c 8o
|\ —#— fixed classifier, d=10 S 3 7of!
o
g o, 60 T 60
< #— learned classifier, d=2048 25 learned classifier, d=2048
c 20 —e— fixed classifier, d=2048 a 40 —e— fixed classifier, d=2048
© —=— |earned classifier, d=10 [} —&— |earned classifier, d=10
= —»— fixed classifier, d=10 = 30 —»— fixed classifier, d=10
0.0 50 100 150 2 205 s0 100 150 200 2% 50 100 150 200
Epoch Epoch Epoch
Self-Duality Collapse (NC3) Training Accuracy Testing Accuracy
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory
ResNet50 on CIFAR-10 with different settings

¢ Learned classifier (default) vs. fixed classifier as a simplex ETF
® Feature dim d = 2048 (default) vs. d = 10

1.2 100 100
[ learned classifier, d=2048 - %
10| —e— fixed classifier, d=2048 b z
0sll ™= learned classifier, d=10 5 80 o 80
|\ —#— fixed classifier, d=10 S 3 70
o
4 g 60 ® 60
c learned classifier, d=2048 g‘ 50 learned classifier, d=2048
c 20 —e— fixed classifier, d=2048 a 2 —e— fixed classifier, d=2048
© —&— |earned classifier, d=10 [} 0 —#— learned classifier, d=10
= —»— fixed classifier, d=10 = 30 —»— fixed classifier, d=10
0.0 so 100 150 200 29 so 100 15 200 2% 50 100 150 200
Epoch Epoch Epoch
Self-Duality Collapse (NC3) Training Accuracy Testing Accuracy

® Training with small dimensional features and fixed classifiers achieves
on-par performance with large dimensional features and learned
classifiers.
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© Prevalence of NC under Different Training Scenarios



Prevalence of NC under Different Training Scenarios

Is Cross-entropy Loss Essential?

Question. Is cross-entropy loss essential to neural collapse?

. : One-hot
. feature mapping £ linear label
(a N :
Po (x) )\/,Jh classifier Whib — o
y o

2He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR'19.
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Prevalence of NC under Different Training Scenarios

Is Cross-entropy Loss Essential?

[ Question. Is cross-entropy loss essential to neural collapse?
s feat . i i One-hot
4. feature mapping £ inear label
4 (x . i
T </’B ( ) )\/ﬂh classifier Whib — ®
\ = {Wvb} [0}
s,// o

® \We can measure the mismatch between the network output and the
one-hot label in many ways.

® Various losses and tricks (e.g., label smoothing, focal loss) have been
proposed to improve network training and performance?

2He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR’19.
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Prevalence of NC under Different Training Scenarios

Example I: Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples?

5
CE(p.) = — log(p) = g 5
—=0.
4 FL(p) = —(1 — p)” log(p:) =1
\\\ —=2
3\r\ =5
0 |\
(%2}
o
2 L
well-classified
examples
1 -Iarge. \ A ~
gradient:,
0 N - — —
0 0.2 0.4 0.6 0.8 small 1
probability of ground truth class gradient

3Lin et al., Focal Loss for Dense Object Detection, CVPR'18.
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Example II: Label Smoothing (LS)

Label smoothing replaces the hard label by a soft label*

., i
y % = feature mapping : linear Solft label
“x N . classifier o
- h Wh+b | o)
\ a2
|
y CE:a=0

Softm: 0.6| Cat 1 -«
Output: Wh+b = 0 200X 10.3| Dog | /2

Cat) - log p(Cat)

—q(
: Dog) - log p(Do
_ 1 | function” | 5 4 Panda| /2 — q(Dog) - log p(Dog)
— ¢(Panda) - log p(Panda)
Prediction ~ Target — (1 —a)log(0.6)
- %log(O.S)
- %log([).l)

4Szegedy et al., Rethinking the inception architecture for computer vision, CVPR'16.
Muller, Kornblith, Hinton, When does label smoothing help?, NeurlPS'19.
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Example IlI: Mean-squared Error (MSE) Loss

2 . i One-hot
- % . feature mapping i linear label
<5 m" o () . classifier )
\\\ A h Wh + b -
\‘ (o]
|
4 °
1 Cat 1
Output: Wh+b= | 0 Dog |0 MSE: = (1 —1)24+(0-0)2+(=1-0)2
—1| Panda |0
Prediction Target

Compared with CE, rescaled MSE loss produces on par results for
computer vision & NLP tasks.®

SHui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in
classification tasks, ICLR 2021.
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Prevalence of NC under Different Training Scenarios

Example IlI: Mean-squared Error (MSE) Loss

=

(b) Cross Entropy

(c) Rescaled MSE (o = 5, M =

1)

(d) Rescaled MSE (o =1, M =
. 1
min ——
W,H,b 2N

5)

A A A
12072 0 (WH + 617 — MY ) 3+ W Wt + A m)E 4 22 o).
Qing Qu (EECS, University of Michigan)
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Example IlI: Mean-squared Error (MSE) Loss

® Error bound condition for vanilla MSE loss:

dist((W, H, b), X) < &|VE(W, H,b)||

for any (W, H,b) with dist((W,H,b),X) <.

® | ocal linear convergence of GD:

MSE Loss (2-layer NN) CE Loss (2-layer NN)

— ) = 1.00e - 04 —— A =1.00e-04
" ) = 5.00e - 04 100 ] =5.00e - 04
L — = 5.00e - 05 —} = 5,002 ~ 05
a & 10
- 10
g 10 )
z z
E g
g 10 B 10%
8 o
- 107
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Epoch Epoch
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Which Loss is the Best to Use?

Testing accuracy (%) for WideResNet18 on mini-ImageNet with
different widths and training iterations

S T

Width=x0.25 44 g5 70.20 70.40 69.15
Epoches = 200

Width = x 2 79.30 79.32 80.20 79.62
Epoches = 800

® The performance is also affected by the choice of network
architecture, training iterations, dataset, etc.

Qing Qu (EECS, University of Michigan) Low-dimensional Representations June 10th, 2023 36 /50



Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective
Theorem (Informal, Zhou et al.’22)

Under the unconstrained feature model, with feature dim.

d > #class K — 1, for all the one-hot labeling based losses (e.g., CE, FL,
LS, MSE),

e NC are the only global solutions for all losses.

o All losses have benign global landscape w.r.t. (W, H ,b)
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Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective
Theorem (Informal, Zhou et al.’22)

Under the unconstrained feature model, with feature dim.

d > #class K — 1, for all the one-hot labeling based losses (e.g., CE, FL,
LS, MSE),

e NC are the only global solutions for all losses.

o All losses have benign global landscape w.r.t. (W, H ,b)

Implication for practical networks If network is /arge enough and
trained longer enough

® All losses lead to largely identical features on training
data—NC phenomena

® All losses lead to largely identical performance on test data
(experiments in the following slides)

\.
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Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

2.0 = 100 100
——
—— LS 3 ey
b —— FL g 80 o 90
@~ MSE o 3
- v} Y
,§1.0 ® 6o © 80
2 —— CE = —— CE
0.5 c —s— LS =1 - IS
R @ " —— FL
= o MSE o MSE
0.0: 60 :
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Epoch Epoch Epoch
Within-Class Variability (NC1) Train accuracy Testing accuracy
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Are All Loses Created Equal?—A NC Perspective

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

2.0 100 100
—»— CE
>
- IS O o
1.5 FL © g0 © 90
3 =1
@~ MSE o [
—- o Y
§21o ® g © 80
2 —— CE = —— CE
= e =t —— L
05 £ 40 Ls % 70 S
© —— FL @ —w— FL
= o MSE o~ MSE
0.0 60 3
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Epoch
Within-Class Variability (NC1)

Epoch
Train accuracy

Epoch
Testing accuracy

Observation: If network is large enough and trained longer enough,
all losses lead to largely identical NC features on training data.
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Prevalence of NC under Different Training Scenarios

All Losses Are Almost Created Equal

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

test Accce

1010 04.477 94.860
PTale] 04.160 94.887
pLt] 93.567 94.207 |94.880 1951047

7 93.363 93.707 94.337

0.25 0.5 1
Width

Cross-entropy

test ACCmse

F:14%0] 93.913 94.400 94.670
PTils) 93.763 94.410 94.570
pJils] 93.163 93.833 94.167 94537
jTo]s] 92.090 92.630 93.240 93.293

0.25 0.5 1
Width

Mean-squared Error

800 [t
PTols) 93.073 94.473

p{e]e] 92.963 93.887 94.040 94.233 g

91.480 92.250 92.827 93.093

0.25 0.5 1
Width

Focal loss

1Y) 94.483 94.807 94.953
PiTole) 94.290 |94.780
200 EEREEREERIERCI G
3 93.230 93.683 94.360

0.25 0.5 1 2
Width

Label smoothing

® Right top corners not only have better performance, but also have
smaller variance than left bottom corners
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Prevalence of NC under Different Training Scenarios

All Losses Are Almost Created Equal

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

test Accce test ACCmse

800 EEEIERTN I 800 |
400 ERGER ST 400 [ELE)
pIN] 93.567 94.297 194 200 EERLEJCEREERCTRTY) pJols) 92.963 93.887 94.040 94.233
92.517 93.363 93.707 94.337 ple]e] 92.090 92.630 93.240 93.293 91.480 92.250 92.827 93.093 100 EZZRUERC-ERERC-ENER -1 - )

0.25 0.5 1 2 025 0.5 1 2 0.25 0.5 1 0.25 0.5 1 2
Width Width Width Width

Cross-entropy Mean-squared Error Focal loss Label smoothing

® Right top corners not only have better performance, but also have
smaller variance than left bottom corners

Observation: If network is large enough and trained longer enough,
all losses lead to largely identical performance on test data.
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

1

min —

n
min > L(Whii yr)

k: 1i=1
s.t. ||wk||2 = T, “hk’lHQ = 1, hkﬂ' = ¢9(azk,i), Vie [n], Vke [K]

Mx
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

K n
. 1
min N;;[’(th,iayk)
s.t. HwkHQ = T, Hhk,z”Q =1, hkﬂ' = ¢9(:1:k7i), Vie [n], Vke [K]

® Improve the quality of @ o
learned features with larger - e ", ,,-.‘»'v"":"‘ - W
class separation [Yu et al., F i & "
2020, Wang and lIsola, 2020] . -';:.'.",‘ 3'3.‘{' : .

® Improve test performance in i _ers Y ¥
practice [Graf et al., 2021, s Gt o 27 = Gl S0

Liu et al., 2021]
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

® Under the unconstrained feature model, a similar global landscape
result can be shown for:

K

1 n
i T h’ 79
win N’;;ECE (Whyi, yr)

st lwilla = 7, |[heilla = 1, Vi€ n], ¥V ke [K].

® More advanced analysis based upon Riemannian optimization tools.
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Prevalence of NC under Different Training Scenarios

Experimental Results with Feature Normalization

Faster training/feature collapse with RseNet on CIFAR100 with feature
normalization

ResNet-18 ResNet-50
1 102 1 102
=== Normalized=False === Normalized=False
Tos === Normalized=True Zos 100 e Normalized=True
£ £
Sos . Sos .
g == Normalized=False é === Normalized=False
o ~— Normalized=True o ~— Normalized=True
c 04 £ 04
£ £
g 0.2 g 0.2 1072
- 3
o 25 50 75 100 %5 50 75 0 25 50 75 w0 25 50 75 100
Epoch Epoch Epoch Epoch
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Neural Collapse for Multi-Label Learning

Multi-Class

Multi-Label

Samples
vAg
W | o

Samples

ﬁ»q

( Labels (t)
O [001]

e

@jHs

[100] [010]

Labels (t)

[101]

010] [111]

Qing Qu (EECS, University of Michigan)
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Prevalence of NC under Different Training Scenarios

Multi-label Learning Setup

Single-label Multi-label Set S
T , Label Y1
S 1
Label Y
xr
Label Y|S|

Lce(Ye(x),y) 2@1 Lce(Ve(x),y:)

Loss "Pick-all" Loss
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Last-Layer Geometry of Multi-label Learning

%J%Z//g" iii.

2
3 cat
ks
E Simplex
= Collapse of gquiangular
0. —¢ last-layer features :;Eg_ll_wé)frame
Qe
] dog
Evolution of training epochs
iv. . { 7€ % } “
Scaled average
)
2
=
D
=
E]
§
L) Multi-label
oty 8 L2y W (e e

® Neural collapse in multi-label learning with 3 classes where the colors
denote the class label;

® Respectively, left/mid/right panel shows representations during
early/mid/late phase of training unconstrained feature model.
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Prevalence of NC under Different Training Scenarios

Multilabel-MNIST Synthetic Example

Multipl.
o 1
o 2

® Experiments with simple MLP architectures.
® The ETF structure still holds for data imbalancedness.
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Neural Collapse for Multi-Label Learning

12
i —— ResNetl8 | —— ResNet18 | —— ResNetl8 | o —— ResNet18
b —+— ResNet50 N ~+— ResNet50 ~+— ResNet50 05 ~+— ResNet50

T —+— VGG16 . —— VGG16 . —— VGG16 o —— VGG16

B2 —— VGG19 S —— VGG19 Sos —— VGG19 Sos —— VGG19

0 o
2
0 o
o 0 o
T % 7w 1 W W TH W o w B W i_wm o won w TE o _wow w o w
Epoch Epoch Epoch

(a) NC1 (MLab-MNIST) (b) N'C2 (MLab-MNIST) (c) NC3 (MLAB-MNIST) (d) N'C,, (MLab-MNIST)

i 1 —— ResNet18 | ** —— ResNet18 | —— ResNetls | —— ResNet18
. —+— ResNet50 as ~+— ResNet50 - ~+— ResNet50 os ~+— ResNet50
o —— VGG16 » —— VGG16 o —— VGG16 s —— VGG16
S —veele | & —— vaelg | See — veG1s | &, —— VGG19
o4 02
’ & N =
0 . oo oo °

o
T @ % B_iw s me 1w R DD I D I D
poch Epoch Epoch

(e) N'C1 (MLab-Cifar10) (f) NC2 (MLab-Cifar10) (g) NC3 (MLab-Cifar10) (h) N'C,,, (MLab-Cifar10)
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Conclusion and Coming Attractions

Learning common deep networks for low-dim structure

* Low-dimensional features: understand low-dim. features (sparse
and neural collapse (NC)) learned in deep classifiers trained with
one-hot labeling based losses in generic settings

Thank You! Questions?



Call for Papers
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® |EEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

e Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.
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