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Neural Collapse, Transfer Learning, & Intermediate Layers

Neural Collapse in Classification

Labels: k = 1, . . . ,K

• K = 10 classes (MNIST, CIFAR10, etc)

• K = 1000 classes (ImageNet)

Assume balanced dataset where each class has n training samples

• If not, we can use data augmentation to make them balanced
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Neural Collapse, Transfer Learning, & Intermediate Layers

Deep Neural Network Classifiers
A deep neural network classifier often contains two parts: a feature
mapping and a linear classifier

• Output: f(x;θ) = Wϕθ′(x) + b with θ = (θ′,W , b).

• Training problem:

min
θ′,W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Wϕθ′(xk,i) + b,yk

)︸ ︷︷ ︸
cross-entropy (CE) loss

+λ ∥(θ′,W , b)∥2F︸ ︷︷ ︸
weight decay
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Neural Collapse, Transfer Learning, & Intermediate Layers

Neural Collapse in Classification

• Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

• Precise mathematical structure within the features and classifier
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Neural Collapse, Transfer Learning, & Intermediate Layers

Implications of Neural Collapse in Transfer Learning?
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Neural Collapse, Transfer Learning, & Intermediate Layers

Efficient Fine-tuning of Pre-trained Models

• Full model fine-tuning (use pre-trained model
as an initialization)

• Expensive & prune to overfitting

• Linear probing with penultimate layer features
(use pre-trained model as a feature extractor)

• cheap but worse performance

Message: We can design simple and efficient fine-tuning approaches
of pre-trained models via Neural Collapse.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Measure of Variability Collapse on Downstream Data

One key metric for Neural Collapse:

NC1 = trace(ΣWΣ†
B).

• Within-class covariance:

ΣW =
1

nK

K∑
k=1

n∑
i=1

(
hk,i − hk

) (
hk,i − hk

)⊤
• Between-class covariance:

ΣB =
1

K

K∑
k=1

(
hk − hG

) (
hk − hG

)⊤
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Neural Collapse, Transfer Learning, & Intermediate Layers

More Variability Collapse, Better Transfer Performance
Neural Collapse of pre-trained models evaluated on downstream data:
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Figure: Transfer accuracy and NC1 of Cifar-100 pre-trained models on
different downstream tasks.
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Figure: Transfer accuracy and NC1 of public ImageNet-1k pre-trained
models on different downstream tasks.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Parameter-Efficient Fine-Tuning via Neural Collapse

Observation: Better transfer performance can be achieved by mak-
ing the last-layer features more collapsed on the downstream data.

Skip connection layer fine-tuning
(SCL-FT):

• Only fine-tuning one key
intermediate layer.

• Improving feature collapse via
skip connections.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Better Performance with Significantly Fewer Parameters

Backbone ResNet50 Vit-B CLIP

Dataset Cifar-10 Cifar-100 Aircraft DTD PET Aircraft DTD PET Aircraft DTD PET

Transfer accuracy

Linear Probe / Zero Shot 85.33 65.47 43.23 68.46 89.26 43.65 73.88 92.23 12.87 32.34 39.66
Layer FT 94.04 77.47 70.27 67.66 89.40 65.83 77.13 92.94 67.63 79.47 91.09
SCL FT 94.94 78.32 70.72 72.87 91.69 65.80 77.34 93.13 66.58 79.04 90.02

Full Model FT 85.51 78.88 80.77 76.12 73.24 64.66 76.54 93.02 59.11 72.82 84.44

NC1 evaluated on the penultimate layer feature hL−1

Linear Probe / Zero Shot 1.84 18.36 20.36 3.52 1.45 17.91 1.99 0.66 17.47 2.96 3.77
Layer FT 0.28 3.22 3.37 1.68 0.68 6.98 1.62 0.44 1.30 0.42 0.32
SCL FT 0.22 2.61 1.02 0.64 0.39 7.48 1.33 0.35 1.65 0.61 0.46

Full Model FT 0.17 0.15 0.61 0.31 0.28 3.78 1.11 0.21 0.49 0.17 0.18

Percentage of parameters fine-tuned

Linear Probe / Zero Shot 0.09% 0.86% 0.86% 0.41% 0.32% 0.09% 0.04% 0.03% 0.0% 0.0% 0.0%
Layer FT 6.52% 7.24% 7.24% 6.82% 6.73% 8.18% 8.14% 8.13% 8.16% 8.11% 8.10%
SCL FT 6.52% 7.24% 7.24% 6.82% 6.73% 8.18% 8.14% 8.13% 8.16% 8.11% 8.10%

Full Model FT 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table: Transfer learning results for linear probing / zero-shot, layer FT,
SCL FT and full model FT on downstream datasets. We use publicly
available ResNet50, ViT-B and CLIP models.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Less Overfitting Compared to Full Model FT

Num. of Samples Per Class

Tr
an
sf
er

Ac
c.

10 100 1000

Num. of Samples Per Class

Tr
an
sf
er

Ac
c.

10 100

（a) ResNet18, Cifar-10 （b) CLIP, Cifar-100

Figure: Transfer accuracy for different fine-tuning methods with varying
size of downstream training dataset.

We fine-tune ImageNet-1k pre-trained ResNet18 models and CLIP using
subsets of the Cifar-10 and Cifar-100 downstream datasets, respectively
with varying sizes.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Parameter-Efficient Fine-Tuning via Neural Collapse
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Figure: Layer-wise NC1 for different fine-tuning methods on ResNet18.
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Figure: Layer-wise NC1 for different fine-tuning methods on Vision
Transformer ViT-B32.
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Neural Collapse, Transfer Learning, & Intermediate Layers
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Neural Collapse, Transfer Learning, & Intermediate Layers

Representation Structures within the Intermediate Layers?
Is there any structure in the representations of intermediate layers?1

NCl
1 = trace(Σl

WΣl†
B).

• Between-class covariance:

Σl
B =

1

K

K∑
k=1

(
zl
k − zl

G

)(
zl
k − zl

G

)⊤

• Within-class covariance:

Σl
W =

1

nK

K∑
k=1

n∑
i=1

(
zl
k,i − zl

k

)(
zk,i − zl

k

)⊤

Effects of Depth: Creating progressive separation and concentra-
tion of data from shallow to deep layers!

1V. Papyan, Traces of class/cross-class structure pervade deep learning spectra, JMLR,
2021. He & Su, A Law of Progressive Separation for Deep Learning, 2022.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Prevalence of Progressive Separation in Deep Learning
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Neural Collapse, Transfer Learning, & Intermediate Layers

Prevalence of Progressive Separation in Deep Learning
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Neural Collapse, Transfer Learning, & Intermediate Layers

Prevalence of Progressive Separation in Deep Learning
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Neural Collapse, Transfer Learning, & Intermediate Layers

Towards Understanding Progressive Collapse?
Given linearly separable data X, we measure a certain metric of data
separation of each layer’s output for linear and nonlinear deep networks:

Figure: Progressive collapse with linear decay2 on deep linear and nonlinear
networks. The x-axis denotes the layer index and the y-axis denotes the
separation measure.

2He & Su, A Law of Progressive Separation for Deep Learning, 2022.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Towards Understanding Progressive Collapse?

Given linearly separable data X, we measure a certain metric of data
separation of each layer’s output on linear and nonlinear deep networks:

Even training overparameterized deep linear networks could have
infinite many solutions, why do such benign structures happen?
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2 Law of Parsimony in Gradient Dynamics
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4 Efficient Deep Matrix Completion
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Law of Parsimony in Gradient Dynamics

Main Message

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

Throughout training of deep networks, the gradient descent leads to
certain parsimonious structures in the weight matrices.
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Law of Parsimony in Gradient Dynamics

Setup on Deep Linear Networks

• Training data {(xi,yi)}Ni=1 ⊂ Rdx × Rdy with

X = [x1 x2 . . . xN ] ∈ Rdx×N , Y = [y1 y2 . . . yN ] ∈ Rdy×N

• Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

where Wl ∈ Rdl×dl−1 and Θ = {Wl}Ll=1.

• Loss function:

min
Θ

ℓ(Θ) =
1

2

N∑
i=1

∥fΘ(xi)− yi∥2F =
1

2
∥WL:1X − Y ∥2F .
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

• Orthogonal initialization. We use ε-scale orthogonal matrices for
some ε > 0, with

W⊤
l (0)Wl(0) = ε2I or Wl(0)W

⊤
l (0) = ε2I, ∀l ∈ [L],

depending on the size of Wl.

• Learning dynamics of GD. We update all weights via GD for
t = 1, 2, . . . as

Wl(t) = (1− ηλ)Wl(t− 1)− η∇Wl
ℓ(Θ(t− 1)), ∀ l ∈ [L],

where η > 0 is the learning rate and λ ≥ 0 controls weight decay.
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

• The weight matrices are square except the last layer, i.e.,
dx = d1 = d2 = · · · = dL−1 = d for some d ∈ N+.

• The input data is whitened in the sense that XX⊤ = Idx .
3

• The cross correlation matrix Y X⊤ has certain low-dimensional
structures (e.g., low-rank or wide matrix).

Under the simplified settings, would GD possess any parsimonious
structures during training?

3For any full rank X ∈ Rdx×N with N ≥ dx, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs
We train a L = 3 layer DLN with dx = dy = 30 and r := rank(Y ) = 3.

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

• Left: the evolution of singular values σ1i(t) throughout training t ≥ 0;

• Middle: the evolution of ∠(v1i(t),v1i(0)) throughout training t ≥ 0;

• Right: the evolution of ∠(u1i(t),u1i(0)) throughout training t ≥ 0.
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Law of Parsimony in Gradient Dynamics
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

The learning process takes place only within a minimal invariant
subspace of each weight matrix, while the remaining singular sub-
spaces stay unaffected throughout training.
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Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

Theorem (Yaras et al.’23)

Suppose we train an L-layer DLN fΘ(·) on (X,Y ) via GD, the iterates
{Wl(t)}Ll=1 for all t ≥ 0 satisfy the following:

• Case 1: Suppose Y X⊤ ∈ Rdy×dx with dy = r and
m := dx − 2dy > 0. Then ∃ {Ul}Ll=1 ⊆ Od and {Vl}Ll=1 ⊆ Od

satisfying Vl+1 = Ul for all l ∈ [L− 1], such that Wl(t) admits the
following decomposition

Wl(t) = Ul

[
W̃l(t) 0
0 ρ(t)Im

]
V ⊤
l , ∀l ∈ [L− 1], t ≥ 0,

where W̃l(t) ∈ R2r×2r for all l ∈ [L− 1] with W̃l(0) = εI2r.

• Case 2: Suppose Y X⊤ ∈ Rdy×dx is of rank r ∈ N+ with dy = dx,
and m = dx − 2r > 0. Similar results hold with different ρ(t).
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Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

• Dynamics of singular values and vectors of weight matrices.
Let W̃l(t) = Ũl(t)Σ̃l(t)Ṽ

⊤
l (t), we can rewrite our decomposition as

Wl(t) =
[
Ul,1Ũl(t) Ul,2

] [
Σ̃l(t) 0
0 ρ(t)Im

] [
Vl,1Ṽl(t) Vl,2

]⊤
,

• Invariance of subspaces in the weights. Both Ul,2 and Vl,2 of size
d− 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 2r!

• Implicit low-rank bias.4 As limε→0 ρ(t) = 0 for all t ≥ 0, all the
weights Wl(t) and the end-to-end matrix WL:1(t) are inherently
low-rank (e.g., at most rank 2r).

4M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.

Figure: Evolution of SVD of weight matrices with momentum.
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The Evolution of Singular Spaces in More Generic Settings
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Figure: Evolution of SVD of weight matrices with momentum.
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Progressive Feature Separation in Deep Neural Networks

Main Message

The law of parsimony in GD explains progressive feature separation.
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Progressive Feature Separation in Deep Neural Networks

Problem Setup: Train DLNs for Classification Problems
• Balanced Training Data: {(xk,i,yk)}i∈[n],k∈[K] for K-class

classification: xk,i ∈ Rd is the i-th sample in the k-th class, yk ∈ RK

is an one-hot label.
• Feature in the l-th Layer of DLN:

zl
k,i := Wl . . .W1xk,i = Wl:1xk,i, ∀l ∈ [L],

• Measure of Data Separation: we replace NCl
1 = trace(Σl

WΣl†
B)

with a simpler measure

Dl := trace(Σl
W )/trace(Σl

B),

Σl
W =

1

nK

K∑
k=1

n∑
i=1

(
zl
k,i − zl

k

)(
zk,i − zl

k

)⊤
, Σl

B =
1

K

K∑
k=1

(
zl
k − zl

G

)(
zl
k − zl

G

)⊤
.
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Progressive Feature Separation in Deep Neural Networks

Progressive Feature Separation with Linear Decay Rate

Figure: Linear decay of feature separation in trained deep networks.
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Progressive Feature Separation in Deep Neural Networks

Progressive Feature Separation with Linear Decay Rate

Theorem (Wang et al.’23)

Suppose we train a L-layer DLN with parameters Θ = {Wl}Ll=1 via GD
with orthogonal initialization of ε-scaling, where input X ∈ Rd×N is
orthogonal and square and dl = d > 2K. If Θ satisfies the following:

• Global Optimality: WL:1X = Y .

• Balancedness: For all weights

W⊤
l+1Wl+1 = WlW

⊤
l , ∀l ∈ [L− 2],

∥W⊤
L WL −WL−1W

⊤
L−1∥F ≤ ε2

√
d−K.

• Unchanged Spectrum: There exists an index set A ⊆ [d] with
|A| = d− 2K such that for all l ∈ [L− 1] that σi(Wl) = ε, ∀i ∈ A.

Then, it holds for all l = 0, 1, . . . , L− 2 that

Dl+1/Dl ≤ 2(
√
K + 1)ε2.
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Progressive Feature Separation in Deep Neural Networks
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Progressive Feature Separation in Deep Neural Networks

Effects of Initialization Scale ε

As predicted by our theory, the decay ratio critically depends on the scale
of initialization ε:

Figure: Linear decay of feature separation measure Dl in trained deep
networks with varying initialization scale ε.
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Progressive Feature Separation in Deep Neural Networks

Tradeoffs Between Decay Rate and Convergence

However, there is trade-off between decay rate ε and training speed of GD:
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Figure: The dynamics of GD for DLNs with learning rate η = 0.1.
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Progressive Feature Separation in Deep Neural Networks

Is the Orthogonal Initialization Critical?

Figure: Linear decay of feature separation in trained DLNs with different
initialization types (left to right: Orth., Norm, Unif).
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Efficient Deep Matrix Completion

Main Message

Figure: Efficient training of deep linear networks.

The law of parsimony in GD leads to efficient network compression.
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Efficient Deep Matrix Completion

Problem Setup for Deep Matrix Completion

Consider recovering Φ ∈ Rd×d with r := rank(Φ) ≪ d with minimum
number of observation encoded by Ω ∈ {0, 1}d×d:

min
Θ

ℓmc(Θ) :=
1

2
∥Ω⊙ (WL:1 −Φ)∥2F .

• If full observation Ω = 1d1
⊤
d available, the problem simplifies to deep

matrix factorization.

• If the network depth L = 2, it reduces to the Burer-Monteiro
factorization formulation.
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Efficient Deep Matrix Completion

Why Deep Matrix Factorization and Overparameterization?

• Benefits of Depth (Left): Improved sample complexity5 and less
prone to overfitting.

• Benefits of Width (Right): Increasing the width of the network
results in accelerated convergence in terms of iterations.

5Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32.
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Efficient Deep Matrix Completion

Overparameterization: A Double Edged Sword

Figure: Efficient training of deep linear networks.

Cons: Increasing the depth and width of the network leads to much
more parameters. Could be expensive to optimize!
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Efficient Deep Matrix Completion

How to Achieve the Best of Two Worlds?

• Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

min
Θ

1

2
∥WL:1 −Φ∥2F ,

with Ω = 1d1
⊤
d . We optimize the problem via GD from ε-scale

orthogonal initialization.

• Law of parsimony in GD for the end-to-end matrix WL:1:

WL:1(t) =
[
UL,1 UL,2

] [W̃L:1(t) 0
0 ρL(t)Im

] [
V ⊤
1,1

V ⊤
1,2

]
= UL,1W̃L:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2,

where we overestimate the rank r̂ > r and let m = d− 2r̂.
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Efficient Deep Matrix Completion

How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1W̃L:1(t)V
⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1W̃L:1(t)V
⊤
1,1, ∀t ≥ 0,

Claim: With small initialization, running GD on the original weights
{Wl}Ll=1 ⊆ Rd×d is almost equivalent to running GD on the com-

pressed weights {W̃l}Ll=1 ⊆ R2r̂×2r̂.
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Efficient Deep Matrix Completion

The Simple Case: Deep Matrix Factorization

Figure: Efficient training of deep linear networks.

Comparison on the number of parameters: original network Ld2

vs. compressed network Lr̂2.
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Efficient Deep Matrix Completion

From Deep Matrix Factorization to Completion?

• However, directly applying our approach from deep matrix
factorization to completion does not work well...

• This is due to the fact that the law of parsimony in GD:

WL:1(t) ≈ UL,1W̃L:1(t)V
⊤
1,1, ∀t ≥ 0,

does NOT hold, because Ω⊙Φ is not low-rank for arbitrary Ω.
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Efficient Deep Matrix Completion

From Deep Matrix Factorization to Completion?

• Remedy: update both V1,1(t) and UL,1(t) factors via GD with a
discrepant learning rate γη in the “compressed network”:6

W (γ)
comp(t) := UL,1(t)W̃L:1(t)V

⊤
1,1(t).

• Complexity: original network O(Ld2) vs compressed network O(Ld).

6This is done simultaneously with the GD updates on the subnetwork W̃L:1(t), which
uses the original learning rate η.
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Efficient Deep Matrix Completion

Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow
network of the same width 2r̂ would perform just as efficiently as the
compressed network with a true width of d ≫ r̂?

Figure: Efficiency of compressed networks vs. narrow network.
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Efficient Deep Matrix Completion

Compressed Networks vs. Narrow Networks?

Figure: Efficiency of compressed networks vs. narrow network.

Answer: No! Over-parameterized networks are “easier” to train.
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Conclusion
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Conclusion and Coming Attractions

Learning common deep networks for low-dim structure

• Low-dimensional features: understand low-dim. features (sparse
and neural collapse (NC)) learned in deep classifiers trained with
one-hot labeling based losses

• Law-of-parsimony in GD: efficient network compression & training,
and understanding intermediate layers of deep networks

Thank You! Questions?



Call for Papers

• IEEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

• Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.
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