ACDL Summer Course 2023

#### Lecture 3: Low-Dimensional Structures in Deep Representation Learning II

#### Qing Qu

EECS, University of Michigan

June 10th, 2023



A B A A B A

1/49

#### Outline

#### 1 Neural Collapse, Transfer Learning, & Intermediate Layers

#### **2** Law of Parsimony in Gradient Dynamics

**③** Progressive Feature Separation in Deep Neural Networks

**4** Efficient Deep Matrix Completion

**5** Conclusion



# Neural Collapse in Classification

Labels:  $k = 1, \ldots, K$ 

- K = 10 classes (MNIST, CIFAR10, etc)
- K = 1000 classes (ImageNet)



Assume balanced dataset where each class has n training samples

If not, we can use data augmentation to make them balanced

# Deep Neural Network Classifiers

A deep neural network classifier often contains two parts: a feature mapping and a linear classifier



- Output:  $f(\boldsymbol{x}; \boldsymbol{\theta}) = \boldsymbol{W} \phi_{\boldsymbol{\theta}'}(\boldsymbol{x}) + \boldsymbol{b}$  with  $\boldsymbol{\theta} = (\boldsymbol{\theta}', \boldsymbol{W}, \boldsymbol{b}).$
- Training problem:

$$\min_{\boldsymbol{\theta}', \boldsymbol{W}, \boldsymbol{b}} \frac{1}{Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \underbrace{\mathcal{L}_{\text{CE}} \left( \boldsymbol{W} \phi_{\boldsymbol{\theta}'}(\boldsymbol{x}_{k,i}) + \boldsymbol{b}, \boldsymbol{y}_{k} \right)}_{\text{cross-entropy (CE) loss}} + \lambda \underbrace{\| (\boldsymbol{\theta}', \boldsymbol{W}, \boldsymbol{b}) \|_{F}^{2}}_{\text{weight decay}}$$

# Neural Collapse in Classification

#### Prevalence of neural collapse during the terminal phase of deep learning training

💿 Vardan Papyan, 💿 X. Y. Han, and David L. Donoho

+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020; https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and Stéphane Mallat)

- Reveals common outcome of learned features and classifiers across a variety of architectures and dataset
- Precise mathematical structure within the features and classifier

4 / 49

< □ > < □ > < □ > < □ > < □ > < □ >

### Implications of Neural Collapse in Transfer Learning?



< □ > < □ > < □ > < □ > < □ > < □ >

#### Efficient Fine-tuning of Pre-trained Models

- Full model fine-tuning (use pre-trained model as an initialization)
  - Expensive & prune to overfitting
- Linear probing with penultimate layer features (use pre-trained model as a feature extractor)
  - cheap but worse performance

### Efficient Fine-tuning of Pre-trained Models

- Full model fine-tuning (use pre-trained model as an initialization)
  - Expensive & prune to overfitting
- Linear probing with penultimate layer features (use pre-trained model as a feature extractor)
  - cheap but worse performance



**Message:** We can design simple and efficient fine-tuning approaches of pre-trained models via Neural Collapse.

(4 何) トイヨト イヨト

#### Measure of Variability Collapse on Downstream Data

One key metric for Neural Collapse:

$$\mathcal{NC}_1 = \mathsf{trace}(\mathbf{\Sigma}_W \mathbf{\Sigma}_B^{\dagger}).$$

• Within-class covariance:

$$oldsymbol{\Sigma}_W \;=\; rac{1}{nK} \sum_{k=1}^K \sum_{i=1}^n \left(oldsymbol{h}_{k,i} - oldsymbol{ar{h}}_k
ight) \left(oldsymbol{h}_{k,i} - oldsymbol{ar{h}}_k
ight)^ op$$

Between-class covariance:

$$\boldsymbol{\Sigma}_{B} = \frac{1}{K} \sum_{k=1}^{K} \left( \bar{\boldsymbol{h}}_{k} - \boldsymbol{h}_{G} \right) \left( \bar{\boldsymbol{h}}_{k} - \boldsymbol{h}_{G} \right)^{\top}$$

#### More Variability Collapse, Better Transfer Performance Neural Collapse of pre-trained models evaluated on **downstream data**:



Figure: Transfer accuracy and  $\mathcal{NC}_1$  of Cifar-100 pre-trained models on different downstream tasks.

・ 何 ト ・ ヨ ト ・ ヨ ト

8/49

#### More Variability Collapse, Better Transfer Performance Neural Collapse of pre-trained models evaluated on **downstream data**:



Figure: Transfer accuracy and  $\mathcal{NC}_1$  of Cifar-100 pre-trained models on different downstream tasks.



Figure: Transfer accuracy and  $\mathcal{NC}_1$  of public ImageNet-1k pre-trained models on different downstream tasks.

Qing Qu (EECS, University of Michigan)

8/49

< □ > < □ > < □ > < □ > < □ > < □ >

#### Parameter-Efficient Fine-Tuning via Neural Collapse

**Observation:** Better transfer performance can be achieved by making the last-layer features more collapsed on the downstream data.

### Parameter-Efficient Fine-Tuning via Neural Collapse

**Observation:** Better transfer performance can be achieved by making the last-layer features more collapsed on the downstream data.

# Skip connection layer fine-tuning (SCL-FT):

- Only fine-tuning one key intermediate layer.
- Improving feature collapse via skip connections.



#### Better Performance with Significantly Fewer Parameters

| Backbone                                                                 | ResNet50                                |                                         |                                         |                                         |                                         | Vit-B                                   |                                         |                                         | CLIP                             |                                         |                                         |
|--------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|
| Dataset                                                                  | Cifar-10                                | Cifar-100                               | Aircraft                                | DTD                                     | PET                                     | Aircraft                                | DTD                                     | PET                                     | Aircraft                         | DTD                                     | PET                                     |
| Transfer accuracy                                                        |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                  |                                         |                                         |
| Linear Probe / Zero Shot<br>Layer FT<br>SCL FT<br>Full Model FT          | 85.33<br>94.04<br><b>94.94</b><br>85.51 | 65.47<br>77.47<br>78.32<br><b>78.88</b> | 43.23<br>70.27<br>70.72<br><b>80.77</b> | 68.46<br>67.66<br><b>72.87</b><br>76.12 | 89.26<br>89.40<br><b>91.69</b><br>73.24 | 43.65<br><b>65.83</b><br>65.80<br>64.66 | 73.88<br>77.13<br><b>77.34</b><br>76.54 | 92.23<br>92.94<br><b>93.13</b><br>93.02 | 12.87<br>67.63<br>66.58<br>59.11 | 32.34<br><b>79.47</b><br>79.04<br>72.82 | 39.66<br><b>91.09</b><br>90.02<br>84.44 |
| $\mathcal{NC}_1$ evaluated on the penultimate layer feature $m{h}^{L-1}$ |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                  |                                         |                                         |
| Linear Probe / Zero Shot<br>Layer FT<br>SCL FT<br>Full Model FT          | 1.84<br>0.28<br>0.22<br>0.17            | 18.36<br>3.22<br>2.61<br>0.15           | 20.36<br>3.37<br>1.02<br>0.61           | 3.52<br>1.68<br>0.64<br>0.31            | 1.45<br>0.68<br>0.39<br>0.28            | 17.91<br>6.98<br>7.48<br>3.78           | 1.99<br>1.62<br>1.33<br>1.11            | 0.66<br>0.44<br>0.35<br>0.21            | 17.47<br>1.30<br>1.65<br>0.49    | 2.96<br>0.42<br>0.61<br>0.17            | 3.77<br>0.32<br>0.46<br>0.18            |
| Percentage of parameters fine-tuned                                      |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                         |                                  |                                         |                                         |
| Linear Probe / Zero Shot<br>Layer FT<br>SCL FT                           | 0.09%<br>6.52%<br>6.52%                 | 0.86%<br>7.24%<br>7.24%                 | 0.86%<br>7.24%<br>7.24%                 | 0.41%<br>6.82%<br>6.82%                 | 0.32%<br>6.73%<br>6.73%                 | 0.09%<br>8.18%<br>8.18%                 | 0.04%<br>8.14%<br>8.14%                 | 0.03%<br>8.13%<br>8.13%                 | 0.0%<br>8.16%<br>8.16%           | 0.0%<br>8.11%<br>8.11%                  | 0.0%<br>8.10%<br>8.10%                  |

Table: Transfer learning results for linear probing / zero-shot, layer FT, SCL FT and full model FT on downstream datasets. We use publicly available ResNet50, ViT-B and CLIP models.

Qing Qu (EECS, University of Michigan)

< □ > < □ > < □ > < □ > < □ > < □ >

#### Less Overfitting Compared to Full Model FT



Figure: Transfer accuracy for different fine-tuning methods with varying size of downstream training dataset.

We fine-tune ImageNet-1k pre-trained ResNet18 models and CLIP using subsets of the Cifar-10 and Cifar-100 downstream datasets, respectively with varying sizes.

・ロト ・ 同ト ・ ヨト ・ ヨト

#### Parameter-Efficient Fine-Tuning via Neural Collapse



Figure: Layer-wise  $\mathcal{NC}_1$  for different fine-tuning methods on ResNet18.

э

A D N A B N A B N A B N

#### Parameter-Efficient Fine-Tuning via Neural Collapse



Figure: Layer-wise  $\mathcal{NC}_1$  for different fine-tuning methods on ResNet18.



Figure: Layer-wise  $\mathcal{NC}_1$  for different fine-tuning methods on Vision Transformer ViT-B32.

イロト イボト イヨト イヨト

12/49

э

# Representation Structures within the Intermediate Layers?

Is there any structure in the representations of intermediate layers?<sup>1</sup>

$$\mathcal{NC}_1^l = \mathsf{trace}(\mathbf{\Sigma}_W^l \mathbf{\Sigma}_B^{l\dagger}).$$

Between-class covariance:

$$oldsymbol{\Sigma}_B^l \;=\; rac{1}{K} \sum_{k=1}^K \left(oldsymbol{ar{z}}_k^l - oldsymbol{z}_G^l
ight) \left(oldsymbol{ar{z}}_k^l - oldsymbol{z}_G^l
ight)^ op$$

• Within-class covariance:

$$\mathbf{\Sigma}_{W}^{l} = rac{1}{nK}\sum_{k=1}^{K}\sum_{i=1}^{n}\left(\mathbf{z}_{k,i}^{l}-ar{\mathbf{z}}_{k}^{l}
ight)\left(\mathbf{z}_{k,i}-ar{\mathbf{z}}_{k}^{l}
ight)^{ op}$$

Qing Qu (EECS, University of Michigan) Low-dimensional Representations June

<sup>&</sup>lt;sup>1</sup>V. Papyan, Traces of class/cross-class structure pervade deep learning spectra, JMLR, 2021. He & Su, A Law of Progressive Separation for Deep Learning, 2022. <= > <= > = <

77

# Representation Structures within the Intermediate Layers?

Is there any structure in the representations of intermediate layers?<sup>1</sup>

$$\begin{split} \hline \mathcal{N}\mathcal{C}_{1}^{l} &= \mathrm{trace}(\boldsymbol{\Sigma}_{W}^{l}\boldsymbol{\Sigma}_{B}^{l\dagger}). \\ \bullet \text{ Between-class covariance:} \\ \boldsymbol{\Sigma}_{B}^{l} &= \frac{1}{K}\sum_{k=1}^{K}\left(\bar{\boldsymbol{z}}_{k}^{l}-\boldsymbol{z}_{G}^{l}\right)\left(\bar{\boldsymbol{z}}_{k}^{l}-\boldsymbol{z}_{G}^{l}\right)^{\top} \\ \bullet \text{ Within-class covariance:} \end{split}$$

$$\boldsymbol{\Sigma}_{W}^{l} = rac{1}{nK}\sum_{k=1}^{K}\sum_{i=1}^{n}\left(\boldsymbol{z}_{k,i}^{l}-ar{\boldsymbol{z}}_{k}^{l}
ight)\left(\boldsymbol{z}_{k,i}-ar{\boldsymbol{z}}_{k}^{l}
ight)$$

**Effects of Depth:** Creating **progressive** separation and concentration of data from shallow to deep layers!

<sup>1</sup>V. Papyan, Traces of class/cross-class structure pervade deep learning spectra, JMLR, 2021. He & Su, A Law of Progressive Separation for Deep Learning, 2022.

Qing Qu (EECS, University of Michigan)

Low-dimensional Representations

#### Prevalence of Progressive Separation in Deep Learning



< □ > < □ > < □ > < □ > < □ > < □ >

э

#### Prevalence of Progressive Separation in Deep Learning



(日)

э

#### Prevalence of Progressive Separation in Deep Learning



#### Towards Understanding Progressive Collapse?

Given linearly separable data X, we measure a certain metric of data separation of each layer's output for linear and nonlinear deep networks:



Figure: Progressive collapse with linear decay<sup>2</sup> on deep linear and nonlinear **networks.** The *x*-axis denotes the layer index and the *y*-axis denotes the separation measure.

<sup>2</sup>He & Su, A Law of Progressive Separation for Deep Learning 2022. ► < => = < Qing Qu (EECS, University of Michigan) Low-dimensional Representations June 10th, 2023 15/49

#### Towards Understanding Progressive Collapse?

Given linearly separable data X, we measure a certain metric of data separation of each layer's output on linear and nonlinear deep networks:



Even training overparameterized deep linear networks could have **infinite many solutions**, why do such benign structures happen?

#### Outline

1 Neural Collapse, Transfer Learning, & Intermediate Layers

#### **2** Law of Parsimony in Gradient Dynamics

**③** Progressive Feature Separation in Deep Neural Networks

**4** Efficient Deep Matrix Completion

**6** Conclusion



#### Main Message



Figure: Evolution of SVD of the weight matrix  $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$ .

Throughout training of deep networks, the gradient descent leads to certain parsimonious structures in the weight matrices.

17 / 49

#### Main Message



Throughout training of deep networks, the gradient descent leads to certain parsimonious structures in the weight matrices.

< 1 k

#### Setup on Deep Linear Networks

• Training data  $\{({m x}_i,{m y}_i)\}_{i=1}^N \subset \mathbb{R}^{d_x} imes \mathbb{R}^{d_y}$  with

 $oldsymbol{X} = [oldsymbol{x}_1 \ oldsymbol{x}_2 \ \dots \ oldsymbol{x}_N] \in \mathbb{R}^{d_x imes N}, \quad oldsymbol{Y} = [oldsymbol{y}_1 \ oldsymbol{y}_2 \ \dots \ oldsymbol{y}_N] \in \mathbb{R}^{d_y imes N}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

#### Setup on Deep Linear Networks

• Training data  $\{({m x}_i, {m y}_i)\}_{i=1}^N \subset \mathbb{R}^{d_x} imes \mathbb{R}^{d_y}$  with

$$oldsymbol{X} = [oldsymbol{x}_1 \; oldsymbol{x}_2 \; \ldots \; oldsymbol{x}_N] \in \mathbb{R}^{d_x imes N}, \quad oldsymbol{Y} = [oldsymbol{y}_1 \; oldsymbol{y}_2 \; \ldots \; oldsymbol{y}_N] \in \mathbb{R}^{d_y imes N}$$

• Deep linear network (DLN):

$$f_{\boldsymbol{\Theta}}(\boldsymbol{x}) := \boldsymbol{W}_{L} \cdots \boldsymbol{W}_{1} \boldsymbol{x} = \boldsymbol{W}_{L:1} \boldsymbol{x},$$

where  $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$  and  $\Theta = \{W_l\}_{l=1}^L$ .

3

#### Setup on Deep Linear Networks

• Training data  $\{({m x}_i, {m y}_i)\}_{i=1}^N \subset \mathbb{R}^{d_x} imes \mathbb{R}^{d_y}$  with

$$oldsymbol{X} = [oldsymbol{x}_1 \; oldsymbol{x}_2 \; \ldots \; oldsymbol{x}_N] \in \mathbb{R}^{d_x imes N}, \quad oldsymbol{Y} = [oldsymbol{y}_1 \; oldsymbol{y}_2 \; \ldots \; oldsymbol{y}_N] \in \mathbb{R}^{d_y imes N}$$

• Deep linear network (DLN):

$$f_{\Theta}(\boldsymbol{x}) := \boldsymbol{W}_{L} \cdots \boldsymbol{W}_{1} \boldsymbol{x} = \boldsymbol{W}_{L:1} \boldsymbol{x},$$

where  $\boldsymbol{W}_{l} \in \mathbb{R}^{d_{l} \times d_{l-1}}$  and  $\boldsymbol{\Theta} = \{\boldsymbol{W}_{l}\}_{l=1}^{L}$ .

Loss function:

$$\min_{\boldsymbol{\Theta}} \ \ell(\boldsymbol{\Theta}) = \frac{1}{2} \sum_{i=1}^{N} \|f_{\boldsymbol{\Theta}}(\boldsymbol{x}_{i}) - \boldsymbol{y}_{i}\|_{F}^{2} = \frac{1}{2} \|\boldsymbol{W}_{L:1}\boldsymbol{X} - \boldsymbol{Y}\|_{F}^{2}$$

く 白 ト く ヨ ト く ヨ ト

.

3

 Orthogonal initialization. We use ε-scale orthogonal matrices for some ε > 0, with

$$\boldsymbol{W}_l^\top(0)\boldsymbol{W}_l(0) = \varepsilon^2 \boldsymbol{I} \quad \text{or} \quad \boldsymbol{W}_l(0)\boldsymbol{W}_l^\top(0) = \varepsilon^2 \boldsymbol{I}, \quad \forall l \in [L],$$

depending on the size of  $W_l$ .

3 × < 3 ×

20 / 49

 Orthogonal initialization. We use ε-scale orthogonal matrices for some ε > 0, with

$$\boldsymbol{W}_l^\top(0)\boldsymbol{W}_l(0) = \varepsilon^2\boldsymbol{I} \quad \text{or} \quad \boldsymbol{W}_l(0)\boldsymbol{W}_l^\top(0) = \varepsilon^2\boldsymbol{I}, \quad \forall l \in [L],$$

depending on the size of  $W_l$ .

• Learning dynamics of GD. We update all weights via GD for  $t = 1, 2, \ldots$  as

$$\boldsymbol{W}_{l}(t) = (1 - \eta \lambda) \boldsymbol{W}_{l}(t - 1) - \eta \nabla_{\boldsymbol{W}_{l}} \ell(\boldsymbol{\Theta}(t - 1)), \ \forall \ l \in [L],$$

where  $\eta > 0$  is the learning rate and  $\lambda \ge 0$  controls weight decay.

20 / 49

We study the GD iterates for training DLNs under the following assumptions:

- The weight matrices are square except the last layer, i.e.,  $d_x = d_1 = d_2 = \cdots = d_{L-1} = d$  for some  $d \in \mathbb{N}_+$ .
- The input data is whitened in the sense that  $oldsymbol{X}oldsymbol{X}^ op=oldsymbol{I}_{d_x}.^3$
- The cross correlation matrix  $YX^{\top}$  has certain low-dimensional structures (e.g., low-rank or wide matrix).

<sup>3</sup>For any full rank  $X \in \mathbb{R}^{d_x \times N}$  with  $N \ge d_x$ , whitened data can always be obtained with a data pre-processing step such as preconditioning.

Qing Qu (EECS, University of Michigan)

21 / 49

We study the GD iterates for training DLNs under the following assumptions:

- The weight matrices are square except the last layer, i.e.,  $d_x = d_1 = d_2 = \cdots = d_{L-1} = d$  for some  $d \in \mathbb{N}_+$ .
- The input data is whitened in the sense that  $oldsymbol{X}oldsymbol{X}^ op=oldsymbol{I}_{d_x}.^3$
- The cross correlation matrix  $YX^{\top}$  has certain low-dimensional structures (e.g., low-rank or wide matrix).

Under the simplified settings, would GD possess any parsimonious structures during training?

<sup>3</sup>For any full rank  $X \in \mathbb{R}^{d_x \times N}$  with  $N \ge d_x$ , whitened data can always be obtained with a data pre-processing step such as preconditioning.

The Evolution of Singular Spaces in GD Iterates for DLNs We train a L = 3 layer DLN with  $d_x = d_y = 30$  and  $r := \operatorname{rank}(\mathbf{Y}) = 3$ .



Figure: Evolution of SVD of the weight matrix  $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$ .

The Evolution of Singular Spaces in GD Iterates for DLNs We train a L = 3 layer DLN with  $d_x = d_y = 30$  and  $r := \operatorname{rank}(\mathbf{Y}) = 3$ .



Figure: Evolution of SVD of the weight matrix  $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$ .

• Left: the evolution of singular values  $\sigma_{1i}(t)$  throughout training  $t \ge 0$ ;

22 / 49
The Evolution of Singular Spaces in GD Iterates for DLNs We train a L = 3 layer DLN with  $d_x = d_y = 30$  and  $r := \operatorname{rank}(\mathbf{Y}) = 3$ .



Figure: Evolution of SVD of the weight matrix  $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$ .

- Left: the evolution of singular values  $\sigma_{1i}(t)$  throughout training  $t \ge 0$ ;
- Middle: the evolution of  $\angle(\boldsymbol{v}_{1i}(t), \boldsymbol{v}_{1i}(0))$  throughout training  $t \ge 0$ ;

- 4 回 ト 4 ヨ ト 4 ヨ ト

The Evolution of Singular Spaces in GD Iterates for DLNs We train a L = 3 layer DLN with  $d_x = d_y = 30$  and  $r := \operatorname{rank}(\mathbf{Y}) = 3$ .



Figure: Evolution of SVD of the weight matrix  $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$ .

- Left: the evolution of singular values  $\sigma_{1i}(t)$  throughout training  $t \ge 0$ ;
- Middle: the evolution of  $\angle(\boldsymbol{v}_{1i}(t), \boldsymbol{v}_{1i}(0))$  throughout training  $t \ge 0$ ;
- **Right:** the evolution of  $\angle(\boldsymbol{u}_{1i}(t), \boldsymbol{u}_{1i}(0))$  throughout training  $t \ge 0$ .





Layer 2



Layer 3



Qing Qu (EECS, University of Michigan)

Low-dimensional Representation

æ

23 / 49

#### The Evolution of Singular Spaces in GD Iterates for DLNs



Figure: Evolution of SVD of the weight matrix  $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$ .

The learning process takes place only within a **minimal invariant subspace** of each weight matrix, while the remaining singular subspaces stay **unaffected** throughout training.

Qing Qu (EECS, University of Michigan)

Low-dimensional Representations

June 10th, 2023

< ロ > < 同 > < 回 > < 回 >

24 / 49

#### Theorem (Yaras et al.'23)

Suppose we train an *L*-layer DLN  $f_{\Theta}(\cdot)$  on (X, Y) via GD, the iterates  $\{W_l(t)\}_{l=1}^L$  for all  $t \ge 0$  satisfy the following:

• Case 1: Suppose  $YX^{\top} \in \mathbb{R}^{d_y \times d_x}$  with  $d_y = r$  and  $m := d_x - 2d_y > 0$ . Then  $\exists \{U_l\}_{l=1}^L \subseteq \mathcal{O}^d$  and  $\{V_l\}_{l=1}^L \subseteq \mathcal{O}^d$ satisfying  $V_{l+1} = U_l$  for all  $l \in [L-1]$ , such that  $W_l(t)$  admits the following decomposition

$$\boldsymbol{W}_{l}(t) = \boldsymbol{U}_{l} \begin{bmatrix} \widetilde{\boldsymbol{W}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t)\boldsymbol{I}_{m} \end{bmatrix} \boldsymbol{V}_{l}^{\top}, \quad \forall l \in [L-1], \ t \geq 0,$$

where  $\widetilde{W}_l(t) \in \mathbb{R}^{2r \times 2r}$  for all  $l \in [L-1]$  with  $\widetilde{W}_l(0) = \varepsilon I_{2r}$ .

イロト 不得 トイヨト イヨト

э

#### Theorem (Yaras et al.'23)

Suppose we train an *L*-layer DLN  $f_{\Theta}(\cdot)$  on (X, Y) via GD, the iterates  $\{W_l(t)\}_{l=1}^L$  for all  $t \ge 0$  satisfy the following:

• Case 1: Suppose  $YX^{\top} \in \mathbb{R}^{d_y \times d_x}$  with  $d_y = r$  and  $m := d_x - 2d_y > 0$ . Then  $\exists \{U_l\}_{l=1}^L \subseteq \mathcal{O}^d$  and  $\{V_l\}_{l=1}^L \subseteq \mathcal{O}^d$ satisfying  $V_{l+1} = U_l$  for all  $l \in [L-1]$ , such that  $W_l(t)$  admits the following decomposition

$$\boldsymbol{W}_{l}(t) = \boldsymbol{U}_{l} \begin{bmatrix} \widetilde{\boldsymbol{W}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t)\boldsymbol{I}_{m} \end{bmatrix} \boldsymbol{V}_{l}^{\top}, \quad \forall l \in [L-1], \ t \geq 0,$$

where  $\widetilde{W}_l(t) \in \mathbb{R}^{2r \times 2r}$  for all  $l \in [L-1]$  with  $\widetilde{W}_l(0) = \varepsilon I_{2r}$ .

• Case 2: Suppose  $YX^{\top} \in \mathbb{R}^{d_y \times d_x}$  is of rank  $r \in \mathbb{N}_+$  with  $d_y = d_x$ , and  $m = d_x - 2r > 0$ . Similar results hold with different  $\rho(t)$ .

イロト 不得 トイヨト イヨト

э

• Dynamics of singular values and vectors of weight matrices. Let  $\widetilde{W}_l(t) = \widetilde{U}_l(t)\widetilde{\Sigma}_l(t)\widetilde{V}_l^{\top}(t)$ , we can rewrite our decomposition as

$$\boldsymbol{W}_{l}(t) = \begin{bmatrix} \boldsymbol{U}_{l,1} \widetilde{\boldsymbol{U}}_{l}(t) & \boldsymbol{U}_{l,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t) \boldsymbol{I}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{l,1} \widetilde{\boldsymbol{V}}_{l}(t) & \boldsymbol{V}_{l,2} \end{bmatrix}^{\top},$$

<sup>4</sup>M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23. https://minyoungg.github.io/overparam/

Qing Qu (EECS, University of Michigan)

Low-dimensional Representations

June 10th, 2023 26 / 49

• Dynamics of singular values and vectors of weight matrices. Let  $\widetilde{W}_l(t) = \widetilde{U}_l(t)\widetilde{\Sigma}_l(t)\widetilde{V}_l^{\top}(t)$ , we can rewrite our decomposition as

$$\boldsymbol{W}_{l}(t) = \begin{bmatrix} \boldsymbol{U}_{l,1} \widetilde{\boldsymbol{U}}_{l}(t) & \boldsymbol{U}_{l,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t) \boldsymbol{I}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{l,1} \widetilde{\boldsymbol{V}}_{l}(t) & \boldsymbol{V}_{l,2} \end{bmatrix}^{\top},$$

• Invariance of subspaces in the weights. Both  $U_{l,2}$  and  $V_{l,2}$  of size d-2r are unchanged throughout training. The learning process occurs only within an invariant subspace of dimension 2r!

<sup>4</sup>M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23. https://minyoungg.github.io/overparam/

Qing Qu (EECS, University of Michigan)

Low-dimensional Representations

June 10th, 2023 26 / 49

• Dynamics of singular values and vectors of weight matrices. Let  $\widetilde{W}_l(t) = \widetilde{U}_l(t)\widetilde{\Sigma}_l(t)\widetilde{V}_l^{\top}(t)$ , we can rewrite our decomposition as

$$\boldsymbol{W}_{l}(t) = \begin{bmatrix} \boldsymbol{U}_{l,1} \widetilde{\boldsymbol{U}}_{l}(t) & \boldsymbol{U}_{l,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t) \boldsymbol{I}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{l,1} \widetilde{\boldsymbol{V}}_{l}(t) & \boldsymbol{V}_{l,2} \end{bmatrix}^{\top},$$

- Invariance of subspaces in the weights. Both U<sub>l,2</sub> and V<sub>l,2</sub> of size d - 2r are unchanged throughout training. The learning process occurs only within an invariant subspace of dimension 2r!
- Implicit low-rank bias.<sup>4</sup> As lim<sub>ε→0</sub> ρ(t) = 0 for all t ≥ 0, all the weights W<sub>l</sub>(t) and the end-to-end matrix W<sub>L:1</sub>(t) are inherently low-rank (e.g., at most rank 2r).

<sup>4</sup>M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23. https://minyoungg.github.io/overparam/

Qing Qu (EECS, University of Michigan)

Low-dimensional Representations

## The Evolution of Singular Spaces in More Generic Settings



Figure: Evolution of SVD of weight matrices without whitened data.

#### The Evolution of Singular Spaces in More Generic Settings



Figure: Evolution of SVD of weight matrices without whitened data.



Figure: Evolution of SVD of weight matrices\_with\_momentum.

Qing Qu (EECS, University of Michigan)

Low-dimensional Representation:

June 10th, 2023

27 / 49

#### Outline

1 Neural Collapse, Transfer Learning, & Intermediate Layers

2 Law of Parsimony in Gradient Dynamics

**3** Progressive Feature Separation in Deep Neural Networks

**4** Efficient Deep Matrix Completion

**6** Conclusion



#### Main Message



The law of parsimony in GD explains progressive feature separation.

# Problem Setup: Train DLNs for Classification Problems

- Balanced Training Data:  $\{(x_{k,i}, y_k)\}_{i \in [n], k \in [K]}$  for K-class classification:  $x_{k,i} \in \mathbb{R}^d$  is the *i*-th sample in the *k*-th class,  $y_k \in \mathbb{R}^K$  is an one-hot label.
- Feature in the *l*-th Layer of DLN:

$$oldsymbol{z}_{k,i}^l := oldsymbol{W}_l \dots oldsymbol{W}_1 oldsymbol{x}_{k,i} = oldsymbol{W}_{l:1} oldsymbol{x}_{k,i}, \; orall l \in [L],$$

# Problem Setup: Train DLNs for Classification Problems

- Balanced Training Data:  $\{(x_{k,i}, y_k)\}_{i \in [n], k \in [K]}$  for K-class classification:  $x_{k,i} \in \mathbb{R}^d$  is the *i*-th sample in the *k*-th class,  $y_k \in \mathbb{R}^K$  is an one-hot label.
- Feature in the *l*-th Layer of DLN:

$$oldsymbol{z}_{k,i}^l := oldsymbol{W}_l \dots oldsymbol{W}_1 oldsymbol{x}_{k,i} = oldsymbol{W}_{l:1} oldsymbol{x}_{k,i}, \; orall l \in [L],$$

• Measure of Data Separation: we replace  $\mathcal{NC}_1^l = \operatorname{trace}(\Sigma_W^l \Sigma_B^{l\dagger})$  with a simpler measure

$$D_l := \operatorname{trace}(\mathbf{\Sigma}_W^l)/\operatorname{trace}(\mathbf{\Sigma}_B^l),$$

# Problem Setup: Train DLNs for Classification Problems

- Balanced Training Data:  $\{(x_{k,i}, y_k)\}_{i \in [n], k \in [K]}$  for K-class classification:  $x_{k,i} \in \mathbb{R}^d$  is the *i*-th sample in the *k*-th class,  $y_k \in \mathbb{R}^K$  is an one-hot label.
- Feature in the *l*-th Layer of DLN:

$$oldsymbol{z}_{k,i}^l := oldsymbol{W}_l \dots oldsymbol{W}_1 oldsymbol{x}_{k,i} = oldsymbol{W}_{l:1} oldsymbol{x}_{k,i}, \; orall l \in [L],$$

• Measure of Data Separation: we replace  $\mathcal{NC}_1^l = \operatorname{trace}(\Sigma_W^l \Sigma_B^{l\dagger})$  with a simpler measure

$$D_l := \operatorname{trace}(\mathbf{\Sigma}_W^l)/\operatorname{trace}(\mathbf{\Sigma}_B^l),$$

$$\boldsymbol{\Sigma}_{W}^{l} = \frac{1}{nK} \sum_{k=1}^{K} \sum_{i=1}^{n} \left( \boldsymbol{z}_{k,i}^{l} - \bar{\boldsymbol{z}}_{k}^{l} \right) \left( \boldsymbol{z}_{k,i} - \bar{\boldsymbol{z}}_{k}^{l} \right)^{\mathsf{T}}, \ \boldsymbol{\Sigma}_{B}^{l} = \frac{1}{K} \sum_{k=1}^{K} \left( \bar{\boldsymbol{z}}_{k}^{l} - \boldsymbol{z}_{G}^{l} \right)$$



Figure: Linear decay of feature separation in trained deep networks.

< 47 ▶

#### Theorem (Wang et al.'23)

Suppose we train a *L*-layer DLN with parameters  $\Theta = \{W_l\}_{l=1}^L$  via GD with orthogonal initialization of  $\varepsilon$ -scaling, where input  $X \in \mathbb{R}^{d \times N}$  is orthogonal and square and  $d_l = d > 2K$ . If  $\Theta$  satisfies the following:

- Global Optimality:  $W_{L:1}X = Y$ .
- Balancedness: For all weights

$$\boldsymbol{W}_{l+1}^{\top} \boldsymbol{W}_{l+1} = \boldsymbol{W}_{l} \boldsymbol{W}_{l}^{\top}, \forall l \in [L-2], \\ \|\boldsymbol{W}_{L}^{\top} \boldsymbol{W}_{L} - \boldsymbol{W}_{L-1} \boldsymbol{W}_{L-1}^{\top}\|_{F} \le \varepsilon^{2} \sqrt{d-K}.$$

#### Theorem (Wang et al.'23)

Suppose we train a *L*-layer DLN with parameters  $\Theta = \{W_l\}_{l=1}^L$  via GD with orthogonal initialization of  $\varepsilon$ -scaling, where input  $X \in \mathbb{R}^{d \times N}$  is orthogonal and square and  $d_l = d > 2K$ . If  $\Theta$  satisfies the following:

- Global Optimality:  $W_{L:1}X = Y$ .
- Balancedness: For all weights

$$\boldsymbol{W}_{l+1}^{\top} \boldsymbol{W}_{l+1} = \boldsymbol{W}_{l} \boldsymbol{W}_{l}^{\top}, \forall l \in [L-2], \\ \|\boldsymbol{W}_{L}^{\top} \boldsymbol{W}_{L} - \boldsymbol{W}_{L-1} \boldsymbol{W}_{L-1}^{\top}\|_{F} \leq \varepsilon^{2} \sqrt{d-K}.$$

• Unchanged Spectrum: There exists an index set  $\mathcal{A} \subseteq [d]$  with  $|\mathcal{A}| = d - 2K$  such that for all  $l \in [L - 1]$  that  $\sigma_i(\mathbf{W}_l) = \varepsilon, \ \forall i \in \mathcal{A}.$ 

#### Theorem (Wang et al.'23)

Suppose we train a *L*-layer DLN with parameters  $\Theta = \{W_l\}_{l=1}^L$  via GD with orthogonal initialization of  $\varepsilon$ -scaling, where input  $X \in \mathbb{R}^{d \times N}$  is orthogonal and square and  $d_l = d > 2K$ . If  $\Theta$  satisfies the following:

- Global Optimality:  $W_{L:1}X = Y$ .
- Balancedness: For all weights

$$\boldsymbol{W}_{l+1}^{\top} \boldsymbol{W}_{l+1} = \boldsymbol{W}_{l} \boldsymbol{W}_{l}^{\top}, \forall l \in [L-2], \\ \|\boldsymbol{W}_{L}^{\top} \boldsymbol{W}_{L} - \boldsymbol{W}_{L-1} \boldsymbol{W}_{L-1}^{\top}\|_{F} \leq \varepsilon^{2} \sqrt{d-K}.$$

• Unchanged Spectrum: There exists an index set  $\mathcal{A} \subseteq [d]$  with  $|\mathcal{A}| = d - 2K$  such that for all  $l \in [L - 1]$  that  $\sigma_i(\mathbf{W}_l) = \varepsilon$ ,  $\forall i \in \mathcal{A}$ . Then, it holds for all l = 0, 1, ..., L - 2 that

$$D_{l+1}/D_l \le 2(\sqrt{K}+1)\varepsilon^2.$$



Layer 1

Qing Qu (EECS, University of Michigan)

SV Index (I) N N N N N

Singular Values

" "Relation

Right Singular Vectors

wes

SV Index (0) " " "

Left Singular Vectors

" wer

SV Index (1) 11 11

æ

## Effects of Initialization Scale $\varepsilon$

As predicted by our theory, the decay ratio critically depends on the scale of initialization  $\varepsilon$ :



Figure: Linear decay of feature separation measure  $D_l$  in trained deep networks with varying initialization scale  $\varepsilon$ .

#### Tradeoffs Between Decay Rate and Convergence

However, there is trade-off between decay rate  $\varepsilon$  and training speed of GD:



Figure: The dynamics of GD for DLNs with learning rate  $\eta = 0.1$ .

## Is the Orthogonal Initialization Critical?



Figure: Linear decay of feature separation in trained DLNs with different initialization types (left to right: Orth., Norm, Unif).

< 回 > < 三 > < 三 >

### Outline

1 Neural Collapse, Transfer Learning, & Intermediate Layers

2 Law of Parsimony in Gradient Dynamics

**③** Progressive Feature Separation in Deep Neural Networks

4 Efficient Deep Matrix Completion

**6** Conclusion



#### Main Message



Figure: Efficient training of deep linear networks.

The law of parsimony in GD leads to efficient network compression.

< 1 k

## Problem Setup for Deep Matrix Completion

Consider recovering  $\Phi \in \mathbb{R}^{d \times d}$  with  $r := \operatorname{rank}(\Phi) \ll d$  with minimum number of observation encoded by  $\Omega \in \{0, 1\}^{d \times d}$ :

$$\min_{\boldsymbol{\Theta}} \ell_{\mathrm{mc}}(\boldsymbol{\Theta}) := \frac{1}{2} \| \boldsymbol{\Omega} \odot (\boldsymbol{W}_{L:1} - \boldsymbol{\Phi}) \|_F^2.$$

ヨトィヨト

## Problem Setup for Deep Matrix Completion

Consider recovering  $\Phi \in \mathbb{R}^{d \times d}$  with  $r := \operatorname{rank}(\Phi) \ll d$  with minimum number of observation encoded by  $\Omega \in \{0, 1\}^{d \times d}$ :

$$\min_{\boldsymbol{\Theta}} \ell_{\mathrm{mc}}(\boldsymbol{\Theta}) := \frac{1}{2} \| \boldsymbol{\Omega} \odot (\boldsymbol{W}_{L:1} - \boldsymbol{\Phi}) \|_{F}^{2}.$$

• If full observation  $\Omega = \mathbf{1}_d \mathbf{1}_d^\top$  available, the problem simplifies to deep matrix factorization.

## Problem Setup for Deep Matrix Completion

Consider recovering  $\Phi \in \mathbb{R}^{d \times d}$  with  $r := \operatorname{rank}(\Phi) \ll d$  with minimum number of observation encoded by  $\Omega \in \{0, 1\}^{d \times d}$ :

$$\min_{\boldsymbol{\Theta}} \ell_{\mathrm{mc}}(\boldsymbol{\Theta}) := \frac{1}{2} \| \boldsymbol{\Omega} \odot (\boldsymbol{W}_{L:1} - \boldsymbol{\Phi}) \|_F^2.$$

- If full observation  $\Omega = \mathbf{1}_d \mathbf{1}_d^\top$  available, the problem simplifies to deep matrix factorization.
- If the network depth L = 2, it reduces to the Burer-Monteiro factorization formulation.

不同 トイモト イモト

## Why Deep Matrix Factorization and Overparameterization?



• Benefits of Depth (Left): Improved sample complexity<sup>5</sup> and less prone to overfitting.

<sup>5</sup>Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep matrix factorization. Advances in Neural Information Processing Systems, 32

Qing Qu (EECS, University of Michigan)

Low-dimensional Representation

## Why Deep Matrix Factorization and Overparameterization?



- Benefits of Depth (Left): Improved sample complexity<sup>5</sup> and less prone to overfitting.
- Benefits of Width (Right): Increasing the width of the network results in accelerated convergence in terms of iterations.

<sup>5</sup>Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep matrix factorization. Advances in Neural Information Processing Systems, 32

Qing Qu (EECS, University of Michigan)

Low-dimensional Representation

#### Overparameterization: A Double Edged Sword



Figure: Efficient training of deep linear networks.

**Cons:** Increasing the depth and width of the network leads to much **more parameters**. Could be **expensive to optimize!** 

• **Deep matrix factorization.** As a starting point, consider the simple deep matrix factorization setting:

$$\min_{\boldsymbol{\Theta}} \ \frac{1}{2} \| \boldsymbol{W}_{L:1} - \boldsymbol{\Phi} \|_F^2,$$

with  $\Omega = \mathbf{1}_d \mathbf{1}_d^{\top}$ . We optimize the problem via GD from  $\varepsilon$ -scale orthogonal initialization.

A B M A B M

• **Deep matrix factorization.** As a starting point, consider the simple deep matrix factorization setting:

$$\min_{\boldsymbol{\Theta}} \ \frac{1}{2} \| \boldsymbol{W}_{L:1} - \boldsymbol{\Phi} \|_F^2,$$

with  $\Omega = \mathbf{1}_d \mathbf{1}_d^{\top}$ . We optimize the problem via GD from  $\varepsilon$ -scale orthogonal initialization.

• Law of parsimony in GD for the end-to-end matrix  $W_{L:1}$ :

$$\begin{split} \boldsymbol{W}_{L:1}(t) &= \begin{bmatrix} \boldsymbol{U}_{L,1} & \boldsymbol{U}_{L,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{W}}_{L:1}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho^{L}(t)\boldsymbol{I}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{1,1}^{\top} \\ \boldsymbol{V}_{1,2}^{\top} \end{bmatrix} \\ &= \boldsymbol{U}_{L,1}\widetilde{\boldsymbol{W}}_{L:1}(t)\boldsymbol{V}_{1,1}^{\top} + \rho^{L}(t)\boldsymbol{U}_{L,2}\boldsymbol{V}_{1,2}^{\top}, \end{split}$$

where we overestimate the rank  $\hat{r} > r$  and let  $m = d - 2\hat{r}$ .

40 / 49

• The effects of small initialization  $\varepsilon$  and depth L:

$$\begin{aligned} \boldsymbol{W}_{L:1}(t) &= \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top} + \boldsymbol{\rho}^{L}(t) \boldsymbol{U}_{L,2} \boldsymbol{V}_{1,2}^{\top} \\ &\approx \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \geq 0, \end{aligned}$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

• The effects of small initialization  $\varepsilon$  and depth L:

$$\begin{aligned} \boldsymbol{W}_{L:1}(t) &= \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top} + \boldsymbol{\rho}^{L}(t) \boldsymbol{U}_{L,2} \boldsymbol{V}_{1,2}^{\top} \\ &\approx \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \geq 0, \end{aligned}$$

**Claim:** With small initialization, running GD on the original weights  $\{W_l\}_{l=1}^L \subseteq \mathbb{R}^{d \times d}$  is **almost equivalent** to running GD on the compressed weights  $\{\widetilde{W}_l\}_{l=1}^L \subseteq \mathbb{R}^{2\widehat{r} \times 2\widehat{r}}$ .
### The Simple Case: Deep Matrix Factorization



Figure: Efficient training of deep linear networks.

**Comparison on the number of parameters:** original network  $Ld^2$  vs. compressed network  $L\hat{r}^2$ .

42 / 49



• However, directly applying our approach from deep matrix factorization to completion does not work well...



- However, directly applying our approach from deep matrix factorization to completion does not work well...
- This is due to the fact that the law of parsimony in GD:

$$\boldsymbol{W}_{L:1}(t) \approx \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \ge 0,$$

does NOT hold, because  $\Omega\odot\Phi$  is not low-rank for arbitrary  $\Omega.$ 



Remedy: update both V<sub>1,1</sub>(t) and U<sub>L,1</sub>(t) factors via GD with a discrepant learning rate γη in the "compressed network":<sup>6</sup>

$$\boldsymbol{W}_{\text{comp}}^{(\gamma)}(t) := \boldsymbol{U}_{L,1}(t) \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}(t).$$

<sup>6</sup>This is done simultaneously with the GD updates on the subnetwork  $\widetilde{W}_{L:1}(t)$ , which uses the original learning rate  $\eta$ .

Qing Qu (EECS, University of Michigan)



Remedy: update both V<sub>1,1</sub>(t) and U<sub>L,1</sub>(t) factors via GD with a discrepant learning rate γη in the "compressed network":<sup>6</sup>

$$\boldsymbol{W}_{\text{comp}}^{(\gamma)}(t) := \boldsymbol{U}_{L,1}(t) \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}(t).$$

• **Complexity:** original network  $O(Ld^2)$  vs compressed network O(Ld).

<sup>6</sup>This is done simultaneously with the GD updates on the subnetwork  $\widetilde{W}_{L:1}(t)$ , which uses the original learning rate  $\eta$ .

Qing Qu (EECS, University of Michigan)

44 / 49

## Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow network of the same width  $2\hat{r}$  would perform just as efficiently as the compressed network with a true width of  $d \gg \hat{r}$ ?

b 4 E b 4 E b

## Compressed Networks vs. Narrow Networks?

**Question:** Does law of parsimony imply that optimizing a narrow network of the same width  $2\hat{r}$  would perform just as efficiently as the compressed network with a true width of  $d \gg \hat{r}$ ?



Figure: Efficiency of compressed networks vs. narrow network.

- (日)

#### Compressed Networks vs. Narrow Networks?



Figure: Efficiency of compressed networks vs. narrow network.

Answer: No! Over-parameterized networks are "easier" to train.

## Outline

1 Neural Collapse, Transfer Learning, & Intermediate Layers

2 Law of Parsimony in Gradient Dynamics

**③** Progressive Feature Separation in Deep Neural Networks

**4** Efficient Deep Matrix Completion





### References

- 1 Yaras, C.\*, Wang, P.\*, Hu, W., Zhu, Z., Balzano, L., Qu, Q. (2023). The Law of Parsimony in Gradient Descent for Learning Deep Linear Networks. arXiv preprint arXiv:2306.01154.
- 2 Li, X., Liu S., Zhou, J., Lu, X., Fernandez-Granda, C., Zhu, Z., Qu, Q. (2023) Principled and Efficient Transfer Learning of Deep Models via Neural Collapse, arXiv preprint arXiv:2212.12206.
- 3 Wang, P., Yaras, C., Li, X., Hu, W., Zhu, Z., Balzano, L., Qu, Q. (2023). Understanding Hierarchical Representation Learning in Deep Networks via Neural Collapse. Working paper.
- 4 Zhu, Z., Ding, T., Zhou, J., Li, X., You, C., Sulam, J., Qu, Q. (2021). A geometric analysis of neural collapse with unconstrained features. Advances in Neural Information Processing Systems, 34, 29820-29834.

3

# **Conclusion and Coming Attractions**

Learning common deep networks for low-dim structure

- Low-dimensional features: understand low-dim. features (sparse and neural collapse (NC)) learned in deep classifiers trained with one-hot labeling based losses
- Law-of-parsimony in GD: efficient network compression & training, and understanding intermediate layers of deep networks

# Thank You! Questions?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

# **Call for Papers**

- IEEE JSTSP Special Issue on Seeking Low-dimensionality in Deep Neural Networks (SLowDNN) Manuscript Due: Nov. 30, 2023.
- Conference on Parsimony and Learning (CPAL) January 2024, Hongkong, Manuscript Due: **Aug. 28, 2023**.



