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Figure: Accuracy vs. model size for image classification on ImageNet dataset
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In principle, deep network can fit any training labels!
(i.e., not only clean, but also corrupted labels)
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The Curse of Overparameterization: Robustness
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Figure: Label memorization.
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The Curse of Overparameterization: Robustness
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Figure: Adversarial attack.
Figure: Label memorization.
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Robust Classification under Noisy Labels

Neural Collapse — Overfitting to Corruptions!
Label noise is common and often unavoidable

® Some proportion of the labels

are incorrect (5-80%7)

® We don’'t know which labels are

correct/incorrect
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Robust Classification under Noisy Labels

Neural Collapse — Overfitting to Corruptions!
Label noise is common and often unavoidable

® Some proportion of the labels
are incorrect (5-80%7)

® We don’'t know which labels are
correct/incorrect

Neural Collapse always happens

® Perfectly fits noisy labels
(ovefitting)

® Cannot predict well on new
images
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Robust Classification under Noisy Labels

Neural Collapse — Overfitting to Corruptions!
Label noise is common and often unavoidable
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Prior Work on Robust Deep Learning for Noisy Labels

Various (heuristic or principled) methods have been proposed®

Noise Adaptation Layer
Robust Architecture (SIII-A) Dedicated Architecture
Explicit Regularization
Robust Regularization (SI11-B) Implicit Regularization
Robust Loss Function (§111-C) Loss Correction
Robust Loss Design Loss Reweighting

Loss Adjustment (SI11-D)

. . Label Refurbishment
Multi-network Learning
Sample Selection (S§111-E) Meta Learnin

Multi-round Learning

Hybrid Approach

1Song et al., Learning from noisy labels with deep neural networks: A survey, IEEE TNNLS,
2022.
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A Sparse Over-Parameterization (SOP) Method

Observation: Only a small fraction of the labels are corrupted, so
that the label noise is sparse.

Yy f(x0) s
cat”[ () 1] — 17
1 0 1

L] = ° +
Corrupted True Sparse
label label noise
2Wright et al., Robust face recognition via sparse representation, TPAMI, 2008.

Candes et al., Robust principal component analysis? JACM, 2011.
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Robust Classification under Noisy Labels A Sparse Over-Parameterization Method

A Sparse Over-Parameterization (SOP) Method

Observation: Only a small fraction of the labels are corrupted, so
that the label noise is sparse.

Yy f(x0) s
cat”[ () 1]
1

% = 0 + 1
@M@ .
Corrupted }rut; -Sparse-

label label noise
Idea from the past: we developed principled methods for dealing with
sparse corruption in Compressive Sensing: Robust PCA?

2Wright et al., Robust face recognition via sparse representation, TPAMI, 2008.
Candes et al., Robust principal component analysis? JACM, 2011.
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A Sparse Over-Parameterization Method
A Sparse Over-Parameterization (SOP) Method

yi = f(xzi; ©° )+ s;

noisy label input params. sparse label noise

!

Exact Separation of Sparse Corruption with Incoherence between Data and Noise
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A Sparse Over-Parameterization Method
A Sparse Over-Parameterization (SOP) Method

Our approach:3 minimize the distance between y and f(8;x) + s

min Z ECE f(xi;0) + u; O u; —v; Ov; ,Yi)

0,u;,v;

over-parameterize s;to promote sparsity

3Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22:
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A Sparse Over-Parameterization Method
A Sparse Over-Parameterization (SOP) Method

Our approach:3 minimize the distance between y and f(8;x) + s

0,u;,v;

N
. 1
min NZ; Lo (f(zi;0) + WiOUi —vi O i)
im

over-parameterize s;to promote sparsity

® Here the over-parameterization u; ® u; — v; ® v; introduces implicit
algorithmic regularization [Vaskevicius et al.’19, Zhao et al.’19]

- . 1
variational form ||s|[; = min -

2 2
min (a2 o]?)

3Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22:
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A Sparse Over-Parameterization Method
A Sparse Over-Parameterization (SOP) Method

Our approach:3 minimize the distance between y and f(8;x) + s

. 1
min - — E Leg(f(xi;0) + u; Ou; —v; O v; ,Yi)
0.u;v; N 4

= over-parameterize s;to promote sparsity

® Here the over-parameterization u; ® u; — v; ® v; introduces implicit
algorithmic regularization [Vaskevicius et al.’19, Zhao et al.’19]

. B : 1 2 2
variational form ||s||; = i §(HUH + [|v||*)

® Why not use explicit regularization?

,,H{‘Lf‘} N ZCCE (zi:©) + 81, y:) + Al sill1

—0 =0

3Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22:
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A Sparse Over-Parameterization Method
A Sparse Over-Parameterization (SOP) Method

Our approach:* minimize the distance between y and f(0;x) + s

. 1
min NZ ECE(f(wi;0)+ u; ©u; —v; ©v; ,Yi)

i=1 over-parameterize s;to promote sparsity

Training: gradient descent with a discrepant learning rate:
0 «— 06— 2L({u v;};0)
7—86 1y Y1 S

w; — u; — aTéL({ui,w};ui)

00

0
v; — v — QT%L({’U,Z‘,’UZ‘};’UZ‘)
Ideally, the implicit regularization drives the GD dynamics to the desired

solution.

4Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22:
Qing Qu (EECS, University of Michigan) Robust Learning June 10th, 2023 10 /26




R TE NG EEETETN NI SNSRI A Sparse Over-Parameterization Method

A Sparse Over-Parameterization (SOP) Method

{0%, 20%,40%} percent of labels for CIFAR-10 training data are randomly
flipped uniformly to another class. Use ResNet34.
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Observation: Compared to vanilla training, SOP does not overfit to
wrong labels and obtain better generalization performance.
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Theoretical Justification based on Simple Models
Theoretical Justification on SOP

A simple model: assume f(x;@) is a scalar function and can be
approximated by first-order Taylor expansion

f(x;0) = f(x;600) + (Vf(z;60),0 — )

Qing Qu (EECS, University of Michigan) Robust Learning June 10th, 2023 12 /26
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Theoretical Justification on SOP

A simple model: assume f(x;@) is a scalar function and can be
approximated by first-order Taylor expansion

f(x:0) = f(x;00) + (Vf(x;60),0 — 60)
WLOG, assume f(x;60¢) + (V f(x;00),00) = 0. For N training samples,

f(x1;0) Vf(w1;60)"

Q

_ : 0=J.0
f(xn:0) Vi(zn;0)"
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Theoretical Justification on SOP

A simple model: assume f(x;@) is a scalar function and can be
approximated by first-order Taylor expansion

f(x:0) = f(x;00) + (Vf(x;60),0 — 60)
WLOG, assume f(x;0p) + (V f(x;00),00) = 0. For N training samples

f(x1:0) Vf(z1;60)"

Q

_ : 0=2J-6
f(zN;0) Vf(xn;6o)"

This leads to the following corrupted observation problem
y=J- 0+ s,

where 0, is the underlying groundtruth parameter, and s, is sparse
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Theoretical Justification based on Simple Models
Theoretical Justification on SOP

We over-parameterize the sparse noise by u ® u — v ® v and solve
min g(0,u,v) = §|]J-9—I—u®u—v®v —y3

;U

using gradient descent with discrepant learning rates

u u Vaug(0:, us, v
0111 =0 — uVeg (01, us, vr), [’U:ij = {vj —op [V:ggﬂ: u: v:;}
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Robust Classification under Noisy Labels Theoretical Justification based on Simple Models

Theoretical Justification on SOP
We over-parameterize the sparse noise by u ® u — v ® v and solve
min g(0, u,v) = §||J'9+u®u—v®v —y3

;U

using gradient descent with discrepant learning rates

u u Vug (0, ug, v
0111 =0y — uNVog(0;, us, vy), [’U:ij - {vj o [V:ggez u: ’v:ﬂ

Theorem (informal) If gradient descent with infinitesimally small
initialization and step size p converges to (0, u,v), then (6, u©u —
v ® V) is an optimal solution to the following convex problem

1
min - [|0[3 + Alls|hi, st y=J-0+s,
0,s 2

solving which exactly recovers (0, s,) when J is incoherent [Candes
& Tao’'05].

\.
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Theoretical Justification based on Simple Models
Theoretical Justification on SOP
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Figure: The SOP and the convex problem produce the same solutions with

_ _ log~y
a=—=31.
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Robust Classification under Noisy Labels

Superior Performance with Training Efficiency

| CIFAR-10 | CIFAR-100

Symmetric Asym Symmetric Asym
Methods 20% 50% 80% | 40% 20% 50% 80% | 40%
CE 87.2 80.7 658 | 822 | 581 47.1 23.8 | 433
MixUp 93.5 879 T23 - 69.9 57.3 33.6 -
DivideMix | 96.1 946 932 | 934 | 771 746 60.2 | 72.1
ELR+ 95.8 948 933 | 93.0 | 77.7 738 60.8 | 77.5
SOP+ | 963 955 940 | 938 | 788 759 633 | 78.0 | Ours

Qing Qu (EECS, University of Michigan)
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Robust Classification under Noisy Labels Experimental Results

Superior Performance with Training Efficiency

| CIFAR-10 | CIFAR-100

Symmetric Asym Symmetric Asym
Methods 20% 50% 80% | 40% | 20% 50% 80% ’ 40%
CE 87.2 80.7 658 | 822 | 581 47.1 238 | 43.3
MixUp 93.5 879 723 - 69.9 57.3 33.6 -
DivideMix | 96.1 946 932 | 934 | 771 746 602 | 721
ELR+ 95.8 948 933 | 93.0 | 77.7 73.8 608 | 77.5

| SOP+ | 963 955 940 | 938 | 788 759 633 | 78.0 | Ours

CE | Co-teaching+ | DivideMix | ELR+ | SOP (ours) | SOP+ (ours)
09h | 4.4h | 54h | 23h | 1.0h | 21h

Table: Comparison of total training time in hours on CIFAR-10 with 50%
symmetric label noise.

Qing Qu (EECS, University of Michigan) Robust Learning June 10th, 2023 15 /26



Robust Cla

on under Noisy L.

Label Set

CIFAR-10N

CIFAR-10N: provide CIFAR-10 with human annotated noisy labels®

CIFAR-10N
Aggregate
Noise Rate

SOP on CIFAR-10 with human annotated noisy labels

CIFAR-10N CIFAR-10N
Random 1 Random 2
9.03% 17.23%

Random 3

CIFAR-10N
18.12%

Worst
17.64%

40.21%

Qing Qu (EECS, University of Michigan)

Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022.=
Robust Learning



= T
SOP on CIFAR-10 with human annotated noisy labels

CIFAR-10N: provide CIFAR-10 with human annotated noisy labels®

CIFAR-10N CIFAR-10N CIFAR-10N CIFAR-10N CIFAR-10N

Label Set

Aggregate Random 1 Random 2 Random 3 Worst

Noise Rate 9.03% 17.23% 18.12% 17.64% 40.21%

® Annotated by 747 independent workers e EEET - BEEZE

® Provide 5 noisy label sets for CIFAR-10 automonie - 23 551 720 Y il e ) ol 5
. _ o Elmal WEES ¥ BN
train iImages: cat EECNSEEEP

e Random i = 1,2, 3: the i-th submitted - g==gg%g=%=
H..

label for each image; frog
® Aggregate: aggregation of three noisy h...:e
labels by majority voting ok J'h.ﬂliﬂlﬂ

® Worst: label set with the highest noise rate

5Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022.
Qing Qu (EECS, University of Michigan) Robust Learning June 10th, 2023 16 /26



ation under Noisy

New SOTA on CIFAR-10N

Methiod CIFAR-10N
Clean Aggregate Random 1 Random 2 Random 3 Worst |

CE (Standard) 9292 £ 0.11 87.77+0.38 8502+0.65 8646+ 1.79 85.16£0.61 77.69 £ 1.55

Forward T" (Patrini et al., 2017) | 93.02+0.12 88.24 +0.22 86.88+0.50 86.14 +0.24 87.04 +0.35 79.79 +0.46

Backward 7' (Patrini et al., 2017) | 93.10 4+ 0.05 88.13+0.29 87.14+0.34 8628 +0.80 86.86+0.41 77.61 +1.05

GCE (Zhang & Sabuncu, 2018) | 92.83 £0.16 87.85+£0.70 87.61 £0.28 87.70+0.56 87.58 +0.29 80.66 + 0.35

Co-teaching (Han et al,, 2018) | 93.35 +0.14 91.20+£0.13 90.33+0.13 90.30 +£0.17 90.15+0.18 83.83 +0.13

Co-teaching+ (Yu etal,, 2019) | 9241 £0.20 90.61 £0.22 89.70 +£0.27 89.47 +0.18 89.54 +022 83.26 +0.17

T-Revision (Xia et al., 2019) 93.35+0.23 88.52+0.17 8833+032 87.71+1.02 87.79+0.67 8048 £1.20

Peer Loss (Liu & Guo, 2020) 9399 £0.13 90.75+025 89.06+0.11 88.76+0.19 88.57+0.09 82.00+0.60

ELR (Liu et al., 2020) 9345 +£0.65 9238 +0.64 91.46+038 91.61 +0.16 91.41+0.44 83.58 +1.13
ELR+ (Liu et al., 2020) 95.39 +£0.05 9483 +0.10 9443+ 041 94204024 94.34+022 91.09 £ 1.60 || Two-network based

ositive-LS (Lukasik et al., B e =B STEQ. .80 £ 0. .35 £ 0. .82 0. .76 £ 0.
F-Div (Wei & Liu. 2()20) 94.88 +£0.12  91.64+0.34 8970+ 040 89.79 +0.12 89.55+049 82.53 +0.52
| Divide-Mix (Li et al., 2020) 9537 £ 0.14 9501071 9516019 9523+ 0.07 9521+0.14 9256 +0.42 || Two-network based
Negative-LS (Wei et al., 2021) 9492 +£0.25 9197046 9029+£032 90.37+0.12 90.13£0.19 8299 +0.36
JoCoR (Wei et al., 2020) 9340+ 024 9144+0.05 90.30+£020 90.21+0.19 90.11 021 83.37 +0.30
CORES? (Cheng et al., 2021) 9343 +£0.24 9123 +£0.11 89.66+032 89914045 89.79+0.50 83.60 +0.53
CORES* (Cheng et al., 2021) 94.16 £0.11 9525+0.09 94.45+0.14 9488 £0.31 94.74 £0.03 91.66 £ 0.09
VolMinNet (Li etal., 2021) 92.14 £0.30 89.70 £0.21 8830+0.12 8827+0.09 88.19+041 80.53 £0.20
CAL (Zhu et al., 2021a) 94.50 +£ 031 91.97+0.32 9093 +0.31 90.754+0.30 90.74 +0.24 85.36 +0.16
PES (Semi) (Bai et al., 2021) 94.76 £ 0.2 94.66 + 0.18  95.06 + 0.15  95.19 + 0.23  95.22 + 0.13  92.68 + 0.22 Semi- superwsed
SOP (Liu et al., 2022) N/A 95.61£0.13 9528 £ 0.13 9531 £ 0.10 9539+ 0.11 9324 +0.21 || Ours
S deling gi f in label noise®
parse moaeling gives super perrormance again label noise

6Wei et al,

Robust Learning

=

Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022
Liu, Zhu, Qu, You Robust Training under Label Noise by Over-parameterization, ICML'22.

Qing Qu (EECS, University of Michigan)
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Extension to Robust Image Recovery

Deep Image Prior’

® Goal: given a corrupted image y = x, + s, recover the clean image
x, from the noisy observation

"Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[J]. International Journal of
Computer Vision, 2020, 128(7).
Qing Qu (EECS, University of Michigan) Robust Learning June 10th, 2023 18 /26



Extension to Robust Image Recovery

Deep Image Prior’
® Goal: given a corrupted image y = x, + s, recover the clean image

x, from the noisy observation
¢ Idea: using a deep network f(@) to fit the observation y:

Corrupted
image

) Clean
min ¢( Y , f(@ ) images
0 corrupted image recovered image
Initialized (7]
image f ( = )

"Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[J]. International Journal of

Computer Vision, 2020, 128(7).
Qing Qu (EECS, University of Michigan)
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Extension to Robust Image Recovery

Deep Image Prior’
® Goal: given a corrupted image y = x, + s, recover the clean image

x, from the noisy observation
¢ Idea: using a deep network f(@) to fit the observation y:

Corrupted
image

) Clean
min ¢( Y , £(0) ) images
0 corrupted image recovered image
Initialized (2]
image f ( N )

e Early stopping: As the network is highly overparameterized, early

stopping is needed.
"Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[J]. International Journal of

Computer Vision, 2020, 128(7).
Qing Qu (EECS, University of Michigan)
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A Case Study: Robust Image Recovery with Sparse Noise

16y D d
o sparse corruption

corrupted input recovered image

DA

Qing Qu (EECS, University of Michigan) Robust Learnin,




A Case Study: Robust Image Recovery with Sparse Noise
e

Early termination solution

Iteration/500
(impractical!)

400

Global solution: f(0) =y
(overfitting!)

Qing Qu (EECS, University of Michigan)
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Extension to Robust Image Recovery

Robust Recovery without Overfitting?

Method: sparse (double) overparameterization
min || y
6.9,h

.8

W

@) + gog—hoh)l|;

rates for double over-parameterization. NeurlPS'20.
Qing Qu (EECS, University of Michigan)

Robust Learning
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8ou C, Zhu Z, Qu Q, Ma Y. Robust recovery via implicit bias of dlscrepant learning
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Extension to Robust Image Recovery

Sparse Overparameterization Method

Clean
images

f(Ok)
DIP Ours

e Optimization: gradient descent with discrepant learning rate:
0 «— 06— 50 ({u v};0)
U — u-— oe’r—é({u v};u)
vV — v— ar—ﬁ({u v};v)

Qing Qu (EECS, University of Michigan) Robust Learning June 10th, 2023 22/26



Extension to Robust Image Recovery

Experiments on Real Images

o —
304 e ETTIILAL
% ’ _,..-.--‘.1 AAREY PN %8s, ,
D R
m 25 =
Call
x 9 ««s. DIP-L1 (F16)
z 20 4+ alsssvseeey — == DIP-L1 (peppers) |
wn N X DIP-L1 (baboon)
A «++. DIP-L1 (kodim03)
— Ours (F16)
15 m——Qurs (peppers) g
e Ours (baboon)
e OQurs (kodim03)
10 . : :
0 50 100 150 200 250 300
Iteration/500

No early stop, no parameter tuning!

Qing Qu (EECS, University of Michigan)

Robust Learning

F16
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Conclusion
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Conclusion and Coming Attractions

Take-home Message: We can achieve better robustness in learning
our overparameterized deep models by exploiting the low-dimensional
structures in the data and network.

Thank You! Questions?



Call for Papers

7

® |EEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

e Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.
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