ACDL Summer Course 2023

Lecture 4: Robust Learning of Overparameterized Networks via Low-Dimensional Models

Qing Qu

EECS, University of Michigan

June 10th, 2023

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< A[™]

Robust Learning

1/26

The Trend of Large Models...

Parameters (M)

Figure: Accuracy vs. model size for image classification on ImageNet dataset

~23 million

~1 million

(# Parameters in ResNet-50)

(# Samples in ImageNet)

In principle, deep network can fit any training labels! (*i.e.*, not only clean, but also corrupted labels)

- ∢ ⊒ →

< 47 ▶

The Curse of Overparameterization: Robustness

Figure: Label memorization.

The Curse of Overparameterization: Robustness

Figure: Label memorization.

Figure: Adversarial attack.

ヨト イヨト

Outline

1 Robust Classification under Noisy Labels

A Sparse Over-Parameterization Method Theoretical Justification based on Simple Models Experimental Results

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

2 Extension to Robust Image Recovery

3 Conclusion

Neural Collapse \rightarrow Overfitting to Corruptions!

Label noise is common and often unavoidable

Some proportion of the labels are incorrect (5-80%?)
 We don't know which labels are correct/incorrect
 Inputs
 Training labels
 True labels
 dog plane
 bird

Neural Collapse \rightarrow Overfitting to Corruptions!

Label noise is common and often unavoidable

- Some proportion of the labels are incorrect (5-80%?)
- We don't know which labels are correct/incorrect

Neural Collapse always happens

- Perfectly fits noisy labels (ovefitting)
- Cannot predict well on new images

Neural Collapse \rightarrow Overfitting to Corruptions!

Label noise is common and often unavoidable

- Some proportion of the labels are incorrect (5-80%?)
- We don't know which labels are correct/incorrect

Neural Collapse always happens

- Perfectly fits noisy labels (ovefitting)
- Cannot predict well on new images

Prior Work on Robust Deep Learning for Noisy Labels

Various (heuristic or principled) methods have been proposed¹

Qing Qu (EECS, University of Michigan)

Observation: Only a small fraction of the labels are corrupted, so that the label noise is **sparse**.

Qing Qu (EECS, University of Michigan)

Robust Learning

²Wright et al., Robust face recognition via sparse representation, TPAMI, 2008. Candes et al., Robust principal component analysis? JACM, 2011 + 4 = 1 + 1

Observation: Only a small fraction of the labels are corrupted, so that the label noise is **sparse**.

Idea from the past: we developed principled methods for dealing with sparse corruption in Compressive Sensing: Robust PCA^2

Exact Separation of Sparse Corruption with Incoherence between Data and Noise

A Sparse Over-Parameterization (SOP) Method **Our approach:**³ minimize the distance between y and $f(\theta; x) + s$

$$\min_{\boldsymbol{\theta}, \boldsymbol{u}_i, \boldsymbol{v}_i} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{\text{CE}}(f(\boldsymbol{x}_i; \boldsymbol{\theta}) + \underbrace{\boldsymbol{u}_i \odot \boldsymbol{u}_i - \boldsymbol{v}_i \odot \boldsymbol{v}_i}_{\text{Over-parameterize s.to promote sparsity}}, \boldsymbol{y}_i)$$

Frameterize s_i to promote sparsity

³Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22.

A Sparse Over-Parameterization (SOP) Method Our approach:³ minimize the distance between y and $f(\theta; x) + s$

$$\min_{\boldsymbol{\theta}, \boldsymbol{u}_i, \boldsymbol{v}_i} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{\text{CE}}(f(\boldsymbol{x}_i; \boldsymbol{\theta}) + \underbrace{\boldsymbol{u}_i \odot \boldsymbol{u}_i - \boldsymbol{v}_i \odot \boldsymbol{v}_i}_{\text{over-parameterize } \boldsymbol{s}_i \text{to promote sparsity}}, \boldsymbol{y}_i)$$

• Here the over-parameterization $u_i \odot u_i - v_i \odot v_i$ introduces implicit algorithmic regularization [Vaskevicius et al.'19, Zhao et al.'19]

variational form
$$\|\boldsymbol{s}\|_1 = \min_{\boldsymbol{s} = \boldsymbol{u} \odot \boldsymbol{u} - \boldsymbol{v} \odot \boldsymbol{v}} \frac{1}{2} (\|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2)$$

9/26

 $^{^3}$ Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22. \odot

A Sparse Over-Parameterization (SOP) Method Our approach:³ minimize the distance between y and $f(\theta; x) + s$

$$\min_{\boldsymbol{\theta}, \boldsymbol{u}_i, \boldsymbol{v}_i} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{\text{CE}}(f(\boldsymbol{x}_i; \boldsymbol{\theta}) + \underbrace{\boldsymbol{u}_i \odot \boldsymbol{u}_i - \boldsymbol{v}_i \odot \boldsymbol{v}_i}_{\text{over-parameterize } \boldsymbol{s}_i \text{to promote sparsity}}, \boldsymbol{y}_i)$$

• Here the over-parameterization $u_i \odot u_i - v_i \odot v_i$ introduces implicit algorithmic regularization [Vaskevicius et al.'19, Zhao et al.'19]

variational form
$$\|\boldsymbol{s}\|_1 = \min_{\boldsymbol{s} = \boldsymbol{u} \odot \boldsymbol{u} - \boldsymbol{v} \odot \boldsymbol{v}} \frac{1}{2} (\|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2)$$

• Why not use explicit regularization?

$$\min_{\boldsymbol{\theta}, \{\boldsymbol{s}_i\}} \frac{1}{N} \sum_{i=1}^{N} \underbrace{\mathcal{L}_{\text{CE}}(f(\boldsymbol{x}_i; \boldsymbol{\Theta}) + \boldsymbol{s}_i, \boldsymbol{y}_i)}_{\rightarrow 0} + \underbrace{\lambda \|\boldsymbol{s}_i\|_1}_{\rightarrow 0}$$

 $^{-3}$ Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22a, \odot

9/26

Our approach: ^4 minimize the distance between ${\boldsymbol y}$ and $f({\boldsymbol \theta};{\boldsymbol x})+{\boldsymbol s}$

$$\min_{\boldsymbol{\theta}, \boldsymbol{u}_i, \boldsymbol{v}_i} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{\text{CE}}(f(\boldsymbol{x}_i; \boldsymbol{\theta}) + \underbrace{\boldsymbol{u}_i \odot \boldsymbol{u}_i - \boldsymbol{v}_i \odot \boldsymbol{v}_i}_{\text{over-parameterize } \boldsymbol{s}_i \text{to promote sparsity}}, \boldsymbol{y}_i)$$

Training: gradient descent with a discrepant learning rate:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \tau \frac{\partial}{\partial \boldsymbol{\theta}} L(\{\boldsymbol{u}_i, \boldsymbol{v}_i\}; \boldsymbol{\theta})$$
$$\boldsymbol{u}_i \leftarrow \boldsymbol{u}_i - \alpha \tau \frac{\partial}{\partial \boldsymbol{\theta}} L(\{\boldsymbol{u}_i, \boldsymbol{v}_i\}; \boldsymbol{u}_i)$$
$$\boldsymbol{v}_i \leftarrow \boldsymbol{v}_i - \alpha \tau \frac{\partial}{\partial \boldsymbol{\theta}} L(\{\boldsymbol{u}_i, \boldsymbol{v}_i\}; \boldsymbol{v}_i)$$

Ideally, the implicit regularization drives the GD dynamics to the desired solution.

⁴Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22a, e

 $\{0\%, 20\%, 40\%\}$ percent of labels for CIFAR-10 training data are randomly flipped uniformly to another class. Use ResNet34.

Observation: Compared to vanilla training, SOP does not overfit to wrong labels and obtain better generalization performance.

Qing Qu (EECS, University of Michigan)

Robust Learning

June 10th, 2023

11/26

A simple model: assume $f(x; \theta)$ is a scalar function and can be approximated by first-order Taylor expansion

$$f(\boldsymbol{x}; \boldsymbol{\theta}) \approx f(\boldsymbol{x}; \boldsymbol{\theta}_0) + \langle \nabla f(\boldsymbol{x}; \boldsymbol{\theta}_0), \boldsymbol{\theta} - \boldsymbol{\theta}_0 \rangle$$

(4) (日本)

A simple model: assume $f(x; \theta)$ is a scalar function and can be approximated by first-order Taylor expansion

$$f(\boldsymbol{x}; \boldsymbol{\theta}) \approx f(\boldsymbol{x}; \boldsymbol{\theta}_0) + \langle \nabla f(\boldsymbol{x}; \boldsymbol{\theta}_0), \boldsymbol{\theta} - \boldsymbol{\theta}_0 \rangle$$

WLOG, assume $f(x; \theta_0) + \langle \nabla f(x; \theta_0), \theta_0 \rangle = 0$. For N training samples,

$$\begin{bmatrix} f(\boldsymbol{x}_1; \boldsymbol{\theta}) \\ \vdots \\ f(\boldsymbol{x}_N; \boldsymbol{\theta}) \end{bmatrix} \approx \begin{bmatrix} \nabla f(\boldsymbol{x}_1; \boldsymbol{\theta}_0)^\top \\ \vdots \\ \nabla f(\boldsymbol{x}_N; \boldsymbol{\theta}_0)^\top \end{bmatrix} \boldsymbol{\theta} = \boldsymbol{J} \cdot \boldsymbol{\theta}$$

イロト イポト イヨト イヨト

A simple model: assume $f(x; \theta)$ is a scalar function and can be approximated by first-order Taylor expansion

$$f(\boldsymbol{x}; \boldsymbol{\theta}) \approx f(\boldsymbol{x}; \boldsymbol{\theta}_0) + \langle \nabla f(\boldsymbol{x}; \boldsymbol{\theta}_0), \boldsymbol{\theta} - \boldsymbol{\theta}_0 \rangle$$

WLOG, assume $f(x; \theta_0) + \langle \nabla f(x; \theta_0), \theta_0 \rangle = 0$. For N training samples,

$$\begin{bmatrix} f(\boldsymbol{x}_1; \boldsymbol{\theta}) \\ \vdots \\ f(\boldsymbol{x}_N; \boldsymbol{\theta}) \end{bmatrix} \approx \begin{bmatrix} \nabla f(\boldsymbol{x}_1; \boldsymbol{\theta}_0)^\top \\ \vdots \\ \nabla f(\boldsymbol{x}_N; \boldsymbol{\theta}_0)^\top \end{bmatrix} \boldsymbol{\theta} = \boldsymbol{J} \cdot \boldsymbol{\theta}$$

This leads to the following corrupted observation problem

$$oldsymbol{y} = oldsymbol{J} \cdot oldsymbol{ heta}_\star + oldsymbol{s}_\star$$

where $heta_{\star}$ is the underlying groundtruth parameter, and s_{\star} is sparse.

(日)

We over-parameterize the sparse noise by $\boldsymbol{u} \odot \boldsymbol{u} - \boldsymbol{v} \odot \boldsymbol{v}$ and solve $\min_{\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{v}} g(\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{v}) = \frac{1}{2} \| \boldsymbol{J} \cdot \boldsymbol{\theta} + \boldsymbol{u} \odot \boldsymbol{u} - \boldsymbol{v} \odot \boldsymbol{v} - \boldsymbol{y} \|_2^2$

using gradient descent with discrepant learning rates

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \mu \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_t, \boldsymbol{u}_t, \boldsymbol{v}_t), \quad \begin{bmatrix} \boldsymbol{u}_{t+1} \\ \boldsymbol{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_t \\ \boldsymbol{v}_t \end{bmatrix} - \frac{\boldsymbol{\alpha}}{\nabla_{\boldsymbol{u}}} \mu \begin{bmatrix} \nabla_{\boldsymbol{u}} g(\boldsymbol{\theta}_t, \boldsymbol{u}_t, \boldsymbol{v}_t) \\ \nabla_{\boldsymbol{v}} g(\boldsymbol{\theta}_t, \boldsymbol{u}_t, \boldsymbol{v}_t) \end{bmatrix}$$

We over-parameterize the sparse noise by $\boldsymbol{u} \odot \boldsymbol{u} - \boldsymbol{v} \odot \boldsymbol{v}$ and solve $\min_{\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{v}} g(\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{v}) = \frac{1}{2} \| \boldsymbol{J} \cdot \boldsymbol{\theta} + \boldsymbol{u} \odot \boldsymbol{u} - \boldsymbol{v} \odot \boldsymbol{v} - \boldsymbol{y} \|_2^2$

using gradient descent with discrepant learning rates

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \mu \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_t, \boldsymbol{u}_t, \boldsymbol{v}_t), \ \begin{bmatrix} \boldsymbol{u}_{t+1} \\ \boldsymbol{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_t \\ \boldsymbol{v}_t \end{bmatrix} - \frac{\boldsymbol{\alpha}}{\nabla_{\boldsymbol{u}}} \mu \begin{bmatrix} \nabla_{\boldsymbol{u}} g(\boldsymbol{\theta}_t, \boldsymbol{u}_t, \boldsymbol{v}_t) \\ \nabla_{\boldsymbol{v}} g(\boldsymbol{\theta}_t, \boldsymbol{u}_t, \boldsymbol{v}_t) \end{bmatrix}$$

Theorem (informal) If gradient descent with infinitesimally small initialization and step size μ converges to $(\widehat{\theta}, \widehat{u}, \widehat{v})$, then $(\widehat{\theta}, \widehat{u} \odot \widehat{u} - \widehat{v} \odot \widehat{v})$ is an optimal solution to the following convex problem

$$\min_{\boldsymbol{\theta},\boldsymbol{s}} \frac{1}{2} \|\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{s}\|_1, \text{ s.t. } \boldsymbol{y} = \boldsymbol{J} \cdot \boldsymbol{\theta} + \boldsymbol{s},$$

solving which exactly recovers $(heta_{\star},s_{\star})$ when J is *incoherent* [Candes & Tao'05].

Figure: The SOP and the convex problem produce the same solutions with $\alpha = -\frac{\log \gamma}{2\lambda}$.

ヨト イヨト

Superior Performance with Training Efficiency

	CIFAR-10				CIFAR-100			
Methods	Sy 20%	7mmeti 50%	ric 80%	Asym 40%	Sy 20%	ymmet 50%	ric 80%	Asym 40%
CE MixUp DivideMix	87.2 93.5 96.1	80.7 87.9 94.6	65.8 72.3 93.2	82.2 - 93.4	58.1 69.9 77.1	$47.1 \\ 57.3 \\ 74.6$	23.8 33.6 60.2	43.3
ELR+	95.8	94.8	93.3	93.0	77.7	73.8	60.8	77.5
SOP+	96.3	95.5	94.0	93.8	78.8	75.9	63.3	78.0

Qing Qu (EECS, University of Michigan)

э

ヨト・イヨト

Superior Performance with Training Efficiency

	CIFAR-10				CIFAR-100			
Methods	Sy 20%	/mmeti 50%	ric 80%	Asym 40%	Sy 20%	7mmet 50%	ric 80%	Asym 40%
CE MixUp	87.2 93.5	$ 80.7 \\ 87.9 $	$65.8 \\ 72.3$	82.2	$\begin{array}{c} 58.1 \\ 69.9 \end{array}$	$47.1 \\ 57.3$	$23.8 \\ 33.6$	43.3 -
DivideMix ELR+	$96.1 \\ 95.8$	$\begin{array}{c} 94.6\\ 94.8\end{array}$	$93.2 \\ 93.3$	$\begin{array}{c} 93.4\\ 93.0\end{array}$	$77.1 \\ 77.7$	$\begin{array}{c} 74.6 \\ 73.8 \end{array}$	$\begin{array}{c} 60.2 \\ 60.8 \end{array}$	$72.1 \\ 77.5$
SOP+	96.3	95.5	94.0	93.8	78.8	75.9	63.3	78.0

CE	${\sf Co-teaching}+$	DivideMix	ELR+	SOP (ours)	SOP+ (ours)
0.9h	4.4h	5.4h	2.3h	1.0h	2.1h

Table: **Comparison of total training time** in hours on CIFAR-10 with 50% symmetric label noise.

< □ > < □ > < □ > < □ > < □ > < □ >

SOP on CIFAR-10 with human annotated noisy labels

CIFAR-10N: provide CIFAR-10 with human annotated noisy labels⁵

Label Set	CIFAR-10N	CIFAR-10N	CIFAR-10N	CIFAR-10N	CIFAR-10N
	Aggregate	Random 1	Random 2	Random 3	Worst
Noise Rate	9.03%	17.23%	18.12%	17.64%	40.21%

⁵Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022. 🖹 🕨 🚊 🔊 🔍

SOP on CIFAR-10 with human annotated noisy labels

CIFAR-10N: provide CIFAR-10 with human annotated noisy labels⁵

Label Set	CIFAR-10N		CIFAR-10N	CIFAR-10N	CIFAR-10N
	Label Set Aggregate		Random 2	Random 3	Worst
Noise Rate	9.03%	17.23%	18.12%	17.64%	40.21%

- Annotated by 747 independent workers
- Provide 5 noisy label sets for CIFAR-10 train images:
- **Random** *i* = 1, 2, 3: the *i*-th submitted label for each image;
- Aggregate: aggregation of three noisy labels by majority voting
- Worst: label set with the highest noise rate

16 / 26

⁵Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022. 🖹 🕨 🚊 🔊 🔍

New SOTA on CIFAR-10N

		CIFA	R-10N			
Clean	Aggregate	Random 1	Random 2	Random 3	Worst	
92.92 ± 0.11	87.77 ± 0.38	85.02 ± 0.65	86.46 ± 1.79	85.16 ± 0.61	77.69 ± 1.55	
93.02 ± 0.12	88.24 ± 0.22	86.88 ± 0.50	86.14 ± 0.24	87.04 ± 0.35	79.79 ± 0.46	
93.10 ± 0.05	88.13 ± 0.29	87.14 ± 0.34	86.28 ± 0.80	86.86 ± 0.41	77.61 ± 1.05	
92.83 ± 0.16	87.85 ± 0.70	87.61 ± 0.28	87.70 ± 0.56	87.58 ± 0.29	80.66 ± 0.35	
93.35 ± 0.14	91.20 ± 0.13	90.33 ± 0.13	90.30 ± 0.17	90.15 ± 0.18	83.83 ± 0.13	
92.41 ± 0.20	90.61 ± 0.22	89.70 ± 0.27	89.47 ± 0.18	89.54 ± 0.22	83.26 ± 0.17	
93.35 ± 0.23	88.52 ± 0.17	88.33 ± 0.32	87.71 ± 1.02	87.79 ± 0.67	80.48 ± 1.20	
93.99 ± 0.13	90.75 ± 0.25	89.06 ± 0.11	88.76 ± 0.19	88.57 ± 0.09	82.00 ± 0.60	
93.45 ± 0.65	92.38 ± 0.64	91.46 ± 0.38	91.61 ± 0.16	91.41 ± 0.44	83.58 ± 1.13	
$\textbf{95.39} \pm \textbf{0.05}$	94.83 ± 0.10	94.43 ± 0.41	94.20 ± 0.24	94.34 ± 0.22	91.09 ± 1.60] Two-network base
94.77 ± 0.17	91.57 ± 0.07	89.80 ± 0.28	89.35 ± 0.33	89.82 ± 0.14	82.76 ± 0.53	
94.88 ± 0.12	91.64 ± 0.34	89.70 ± 0.40	89.79 ± 0.12	89.55 ± 0.49	82.53 ± 0.52	
$\textbf{95.37} \pm \textbf{0.14}$	$\textbf{95.01} \pm \textbf{0.71}$	$\textbf{95.16} \pm \textbf{0.19}$	$\textbf{95.23} \pm \textbf{0.07}$	$\textbf{95.21} \pm \textbf{0.14}$	$\textbf{92.56} \pm \textbf{0.42}$	Two-network base
94.92 ± 0.25	91.97 ± 0.46	90.29 ± 0.32	90.37 ± 0.12	90.13 ± 0.19	82.99 ± 0.36	
93.40 ± 0.24	91.44 ± 0.05	90.30 ± 0.20	90.21 ± 0.19	90.11 ± 0.21	83.37 ± 0.30	
93.43 ± 0.24	91.23 ± 0.11	89.66 ± 0.32	89.91 ± 0.45	89.79 ± 0.50	83.60 ± 0.53	
94.16 ± 0.11	$\textbf{95.25} \pm \textbf{0.09}$	94.45 ± 0.14	94.88 ± 0.31	94.74 ± 0.03	91.66 ± 0.09	
92.14 ± 0.30	89.70 ± 0.21	88.30 ± 0.12	88.27 ± 0.09	88.19 ± 0.41	80.53 ± 0.20	
94.50 ± 0.31	91.97 ± 0.32	90.93 ± 0.31	90.75 ± 0.30	90.74 ± 0.24	85.36 ± 0.16	
94.76 ± 0.2	94.66 ± 0.18	$\textbf{95.06} \pm \textbf{0.15}$	$\textbf{95.19} \pm \textbf{0.23}$	$\textbf{95.22} \pm \textbf{0.13}$	$\textbf{92.68} \pm \textbf{0.22}$	Semi-supervised
N/A	$\textbf{95.61} \pm \textbf{0.13}$	$\textbf{95.28} \pm \textbf{0.13}$	$\textbf{95.31} \pm \textbf{0.10}$	$\textbf{95.39} \pm \textbf{0.11}$	$\textbf{93.24} \pm \textbf{0.21}$	Ours
	$\begin{array}{c} Clean \\ \hline 22.92 \pm 0.11 \\ 93.02 \pm 0.12 \\ 93.02 \pm 0.12 \\ 93.10 \pm 0.05 \\ 92.83 \pm 0.16 \\ 93.35 \pm 0.14 \\ 92.41 \pm 0.20 \\ 93.35 \pm 0.23 \\ 93.45 \pm 0.65 \\ 93.39 \pm 0.05 \\ 93.45 \pm 0.65 \\ 93.47 \pm 0.17 \\ 94.88 \pm 0.12 \\ 94.88 \pm 0.12 \\ 94.92 \pm 0.25 \\ 93.40 \pm 0.24 \\ 94.94 \pm 0.20 \\ 93.43 \pm 0.24 \\ 94.94 \pm 0.20 \\ 93.43 \pm 0.24 \\ 94.95 \pm 0.25 \\ 93.40 \pm 0.24 \\ 94.95 \pm 0.25 \\ 93.43 \pm 0.24 \\ 94.95 \pm 0.25 \\ 94.9$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Sparse modeling gives super performance again label noise⁶

Qing Qu (EECS, University of Michigan)

Outline

Robust Classification under Noisy Labels A Sparse Over-Parameterization Method

Theoretical Justification based on Simple Models Experimental Results

2 Extension to Robust Image Recovery

3 Conclusion

Deep Image Prior⁷

• **Goal:** given a corrupted image $y = x_{\star} + s$, recover the clean image x_{\star} from the noisy observation

⁷Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7).

Qing Qu (EECS, University of Michigan)

Deep Image Prior⁷

- **Goal:** given a corrupted image $y = x_{\star} + s$, recover the clean image x_{\star} from the noisy observation
- Idea: using a deep network *f*(*θ*) to fit the observation *y*:

 $f(\boldsymbol{\theta})$

corrupted image recovered image

⁷Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7).

Qing Qu (EECS, University of Michigan)

 $\min \ell($

Deep Image Prior⁷

- **Goal:** given a corrupted image $y = x_{\star} + s$, recover the clean image x_{\star} from the noisy observation
- Idea: using a deep network *f*(*θ*) to fit the observation *y*:

• **Early stopping:** As the network is highly **overparameterized**, early stopping is needed.

⁷Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7).

Qing Qu (EECS, University of Michigan)

A Case Study: Robust Image Recovery with Sparse Noise

A Case Study: Robust Image Recovery with Sparse Noise

(日) (四) (日) (日) (日)

Robust Recovery without Overfitting?

Method: sparse (double) overparameterization:⁸

⁸You C, Zhu Z, Qu Q, Ma Y. Robust recovery via implicit bias of discrepant learning rates for double over-parameterization. NeurIPS'20.

Qing Qu (EECS, University of Michigan)

Robust Learning

June 10th, 2023

21/26

Sparse Overparameterization Method

• Optimization: gradient descent with discrepant learning rate:

$$\begin{aligned} \boldsymbol{\theta} &\leftarrow \boldsymbol{\theta} - \tau \frac{\partial}{\partial \boldsymbol{\theta}} \ell(\{\boldsymbol{u}, \boldsymbol{v}\}; \boldsymbol{\theta}) \\ \boldsymbol{u} &\leftarrow \boldsymbol{u} - \boldsymbol{\alpha} \tau \frac{\partial}{\partial \boldsymbol{\theta}} \ell(\{\boldsymbol{u}, \boldsymbol{v}\}; \boldsymbol{u}) \\ \boldsymbol{v} &\leftarrow \boldsymbol{v} - \boldsymbol{\alpha} \tau \frac{\partial}{\partial \boldsymbol{\theta}} \ell(\{\boldsymbol{u}, \boldsymbol{v}\}; \boldsymbol{v}) \end{aligned}$$

< ∃⇒

Experiments on Real Images

< □ > < □ > < □ > < □ > < □ > < □ >

23 / 26

Outline

Robust Classification under Noisy Labels

A Sparse Over-Parameterization Method Theoretical Justification based on Simple Models Experimental Results

2 Extension to Robust Image Recovery

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

References

- 1 Liu S, Zhu Z, Qu Q, You C, Robust Training under Label Noise by Over-parameterization, ICML'22.
- 2 You C, Zhu Z, Qu Q, Ma Y. Robust recovery via implicit bias of discrepant learning rates for double over-parameterization. NeurIPS'20.
- 3 Li X, Yaras C, An Y, Ravishankar S, and Qu Q. Data-Free Deep Image Recovery from Sparsely Corrupted Incomplete Measurements, In preparation, 2023.

Conclusion and Coming Attractions

Take-home Message: We can achieve better robustness in learning our overparameterized deep models by exploiting the low-dimensional structures in the data and network.

Thank You! Questions?

<ロト <四ト <注入 <注下 <注下 <

Call for Papers

- IEEE JSTSP Special Issue on Seeking Low-dimensionality in Deep Neural Networks (SLowDNN) Manuscript Due: Nov. 30, 2023.
- Conference on Parsimony and Learning (CPAL) January 2024, Hongkong, Manuscript Due: **Aug. 28, 2023**.

