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ABSTRACT
In this work, we study the deep image prior (DIP) for reconstruc-

tion problems in magnetic resonance imaging (MRI). DIP has be-
come a popular approach for image reconstruction, where it recovers
the clear image by fitting an overparameterized convolutional neu-
ral network (CNN) to the corrupted/undersampled measurements.
To improve the performance of DIP, recent work shows that using
a reference image as an input often leads to improved reconstruc-
tion results compared to vanilla DIP with random input. However,
obtaining the reference input image often requires supervision and
hence is difficult in practice. In this work, we propose a self-guided
reconstruction scheme that uses no training data other than the set of
undersampled measurements to simultaneously estimate the network
weights and input (reference). We introduce a new regularization
that aids the joint estimation by requiring the CNN to act as a pow-
erful denoiser. The proposed self-guided method gives significantly
improved image reconstructions for MRI with limited measurements
compared to the conventional DIP and the reference-guided method
while eliminating the need for any additional data.

Index Terms— Magnetic resonance imaging, compressed sens-
ing, machine learning, deep learning, Deep image prior.

1. INTRODUCTION

MRI [1] is a non-invasive modality that is widely used to image for
both human anatomical structures and functions. However, the MRI
data acquisition process is slow, and traditional image reconstruction
methods require many measurements to produce high-quality im-
ages. This limits efficiency and image quality in applications includ-
ing dynamic imaging and may lead to improper clinical diagnosis.
Consequently, developing reconstruction methods that can produce
clinically useful images from highly undersampled measurements is
desirable.

Recently, compressed sensing (CS) [2], has enabled the recon-
struction of MR images from undersampled data, leading to reduced
scan times. CS relies on a prior assumption about the structure of
MR images, and the reconstruction framework incorporates a reg-
ularization term based on this assumption. Two common choices
for this prior in classical CS-MRI are sparsity in the wavelet do-
main [3] and total variation of the reconstructed image [4]. While
classical CS assumes known sparsity bases of signals or incoherence,
methods using learned image models for reconstruction have proved
more effective, such as those involving (patch-based) synthesis dic-
tionary learning [5, 6]. Recent advances in transform learning [7, 8]
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also provide an efficient alternative framework for sparse modeling
in MRI. Other recent approaches have used explicitly (with super-
vision) learned regularizers [9] that also have the potential to yield
improved image quality.

Deep learning has received a great deal of attention in the med-
ical imaging field over the past few years, as it has shown supe-
rior performance in denoising and imaging inverse problems such
as MRI reconstruction compared to several conventional methods.
For example, end-to-end trained CNNs have demonstrated success
in image reconstruction. One popular network choice is the U-Net
architecture [10, 11]. A wide range of other architectures have also
been used successfully for MRI reconstruction, including transform-
ers [12] and generative adversarial networks [13] (cf. review in [8]).
Importantly, hybrid-domain methods [14] that enforce data consis-
tency (i.e., the reconstruction should be consistent with the measured
data) during both training and reconstruction, show enhanced sta-
bility and performance. However, while these deep learning mod-
els achieve state-of-the-art performance in important imaging tasks,
they often require extensive training on a large data set.

Numerous studies, beginning with the deep image prior [15],
have shown that even in the absence of training data, the archi-
tecture of a CNN may serve as a sufficiently robust prior to per-
mit network learning and image reconstruction from only undersam-
pled measurements. The inductive bias of untrained CNNs allows
them to provide denoising, inpainting, super-resolution, and even
compressed sensing [16] without any training data set. A recent
work [17] proposes incorporating some prior information into DIP-
based reconstruction by using a carefully selected reference image
as network input during training. This reference-guided approach
significantly improves the reconstruction quality and stability, while
eliminating the need for fully supervised training. However, this
method still relies on the availability of a suitable reference image,
which may not always be the case. It is also unclear from [17] how
such a reference can be suitably selected based on only undersam-
pled measurements of an unknown test image.

Inspired by the ability of reference-based guidance to improve
the performance of DIP reconstruction, we consider the setting
where absolutely no reference or training data is available. We
propose a self-guided DIP method, which eliminates the need for a
separate reference image and gives much better MRI reconstruction
quality than the reference-guided method as well as other schemes.
We also draw inspiration in our approach from recent advances such
as randomized smoothing [18].

2. DEEP IMAGE PRIOR BASED MRI RECONSTRUCTION

2.1. Multi-coil MRI Reconstruction

To ensure accurate reconstructions, ill-posed inverse problems such
as MR image reconstruction from undersampled k-space (FourierIC
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domain) measurements generally require additional priors or mod-
els on the underlying image. Typically, this is achieved by incorpo-
rating explicit or implicit regularizers during image reconstruction.
The regularizer imposes additional constraints on the desired type of
solution resulting in a more stable eventual solution. For multi-coil
MRI reconstruction of an image x ∈ Cq , the optimization problem
can be mathematically formulated as

x̂ = argmin
x

Nc∑
c=1

∥Acx− yc∥22 + λR(x), (1)

where yc ∈ Cp, c = 1, . . . , Nc, represent the acquired k-space
measurements from Nc coils. We write the forward system operator
as Ac = MFFFSc, where M ∈ {0, 1}p×q is a masking operator that
captures the pattern for sampling data in k-space, FFF ∈ Cq×q is the
Fourier transform operator, and Sc ∈ Cq×q is the cth coil-sensitivity
map (a diagonal matrix). Here, the explicit regularizer R(·) is used
to restrict the solutions to the space of desirable images.

Choices for the regularizer in MRI reconstruction can vary from
the ℓ1 penalty on wavelet coefficients or a total variation penalty to
patch-based sparsity in learned dictionaries or, as in our method, the
proximity of the reconstructed image to a CNN-denoised image.

2.2. Deep Image Prior for MRI Reconstruction

MRI reconstruction using DIP is typically formulated as

θ̂ = argmin
θ

Nc∑
c=1

∥Acfffθ(zzz)− yc∥22, x̂ = fff θ̂(zzz), (2)

where fff is a CNN with parameters θ and zzz is a typically fixed net-
work input that is randomly chosen (e.g., a random Gaussian vector
or tensor). We will refer to this formulation as “vanilla DIP” in this
work.

2.3. Overfitting and Spectral Bias in Deep Image Prior

Since DIP relies on training a network using noisy or incomplete
data, the corresponding corruptions will eventually appear in the net-
work output if it is trained until loss function convergence. This
phenomenon not only affects the performance of DIP in image de-
noising, which has been well-studied, but also in inverse problems
such as MRI reconstruction, where the measurement operator has a
non-trivial null space. In Fig. 1, we can observe that the MRI re-
construction quality peaks quickly and then gradually decreases as
training continues. This demonstrates the need for an early stopping
criterion when using vanilla DIP to solve inverse problems.

Another phenomenon observed when using DIP is spectral bias,
where the network learns low frequency image content more quickly
and more accurately than high frequency content [19]. Spectral bias
may limit the performance of DIP, since the network may not learn
relevant high frequency content before overfitting. However, it may
also help explain the effectiveness of DIP in some settings, because
noise generally contains more high frequency content than natural
images.

2.3.1. Understanding Spectral Bias and Overfitting for DIP MRI

To understand the spectral bias present in vanilla DIP MRI recon-
struction, we use a frequency band metric to investigate the dif-
ference between reconstructed frequencies and those of the ground
truth. We analyze the multi-coil k-space of the output image fffθ(zzz)
at each network update iteration and compare it to that of the target

Fig. 1: Top row: the three masks used to compute the frequency
band-based metric. Bottom row: reconstruction PSNR plot on the
left illustrates the overfitting issue that occurs during MRI recon-
struction. Spectral bias also affects the performance of DIP for MRI
reconstruction (right plot), as different frequency bands are recon-
structed at different rates.

image’s k-space y∗
c to understand the convergence dynamics of dif-

ferent frequency components (see Fig. 1). To do this, we compute
the following metric for low, middle, and high frequency bands:

NMSE :=

∑Nc
c=1

∥∥MfreqAcfffθ(zzz)−Mfreqy
∗
c

∥∥2

2∑Nc
c=1

∥∥Mfreqy
∗
c

∥∥2

2

(3)

where Mfreq is the frequency band mask.

2.4. Reference-Guided DIP

The reference-guided DIP formulation was proposed in [17] as

θ̂ = argmin
θ

Nc∑
c=1

∥Acfffθ(zzz)− yc∥22, x̂ = fff θ̂(zzz).

This formulation is identical to the problem in (2), except that the
input to the network is no longer fixed random noise, but is instead
a reference image that is very similar to the one being reconstructed.
The input to the network introduces some additional structural infor-
mation, and we can consider the network as essentially performing
image refinement or style transfer rather than image generation from
scratch. This method is quite reasonable in cases where a data set
of structurally similar images is available (the FastMRI data set is a
good example), and there is a systematic way to choose the network
input image from the data set based on only undersampled k-space
observations in the test scan.

In [17], the input image seems to be chosen ad hoc by hand.
As a more realistic modification of this method, we use an approach
similar to the recent LONDN-MRI [20] method to search for the ref-
erence image (using a distance metric such as euclidean distance or
other metric) that is most similar to an estimated test reconstruction
from undersampled data.

2.5. Self-Guided DIP

To circumvent the need for a prior chosen reference to guide DIP,
we introduce the following method which adaptively estimates such
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a reference, which we call self-guided DIP:

θ̂, ẑzz = argmin
θ,zzz

Nc∑
c=1

∥AcEη[fffθ(zzz + η)]− yc∥22︸ ︷︷ ︸
data consistency

+ α ∥Eη[fffθ(zzz + η)]− zzz∥22︸ ︷︷ ︸
denoiser regularization

(4)

x̂ = Eη∼Pη [fff θ̂(ẑzz + η)] (5)

In this optimization, zzz is no longer a reference image, but is instead
initialized to a zero-filled (for missing k-space) least squares recon-
struction, and η is random noise drawn from some distribution Pη

(either uniform or Gaussian in our experiments). The first term in
the optimization enforces data consistency, while the second term
enforces that fff should act as a denoiser. We also note that in our
scheme, zzz is optimized, in contrast to both vanilla and reference-
guided DIP. Hence we call this method “self-guided,” because at
each iteration the network’s “reference” is updated.

Another interesting aspect of this scheme is that the best per-
formance is achieved when the magnitude of η is quite large. The
addition of this noise to the network input at each iteration is similar
to training techniques used to promote adversarial robustness [21].
Additionally, computing both the loss and final reconstruction as an
expectation bears resemblance to recent work on the use of random-
ized smoothing to train robust models.

In Fig. 2, we demonstrate the importance of the second term in
the optimization. Without this term, zzz is not able to be updated ap-
propriately, which leads to unstable training and poor performance.
This demonstrates the effectiveness of using denoising performance
as a regularizer.

Fig. 2: Self-guided deep image prior: effect of regularization.

2.6. Data Correction

To further increase the quality of the network output, we apply a sim-
ple data correction post-processing operation after the optimization
is complete. This is similar to the reference-guided DIP paper [17]
and is given by

ycnew = MFFFSc(x̂) +MTyc,

x̂corrected =

Nc∑
c=1

SH
c FFFHycnew , (6)

where M samples only the frequencies not in the mask, M, setting
values for other frequencies to zero. Assuming the sensitivity maps
are appropriately normalized, this step is akin to solving the least
squares data-fitting problem with the originally missing frequencies
compensated using the information from MFFFSc(x̂).

Algorithm 1 Self-Guided Algorithm

Require: Initial reconstructed image zzz0, random Gaussian noise or
uniform noise η, k-space sampling mask M, regularization pa-
rameter α, parameters of optimizer for θ and zzz (we used Adam
optimizer), number of optimization iterations T .

1: Initialize reconstruction network parameters θ with randomly
initialized weights. Set zzz = zzz0.

2: for iteration < maximal number T do
3: Generate k inputs zzz + η for k realizations of η.
4: Compute the loss and calculate gradients.
5: Update θ using network optimizer.
6: Update zzz using input optimizer.
7: end for
8: Compute xout = Eη[fffθ(zzz + η)].
9: Apply the data correction operation to xout.

10: return learned net. parameters θ. output reconstruction xout.

Fig. 3: Flow chart of the proposed self-guided DIP algorithm.

3. EXPERIMENTS AND RESULTS

Data set. We tested the different methods on the multi-coil
FastMRI knee data set [22, 23]. 15 separate images (all from dif-
ferent sequences) were used as test data. The coil sensitivity maps
for all cases were obtained using the BART toolbox [24] and all the
coil sensitivity maps were estimated from under-sampled (center of
k-space) data to create a realistic testing setup.

Training setup. We provide a comparison of five reconstruction
methods: vanilla DIP, reference-guided DIP, self-guided DIP, com-
pressed sensing with wavelet regularization, and a CNN trained in
an end-to-end supervised manner on a set of 3000 images. For com-
pressed sensing, we used the SigPy package1, and the regularization
parameter was tuned and set as λ = 10−6. During training, the net-
work weights were initialized randomly (normally distributed). For
all of the deep network methods, the network architecture used was
a deep U-Net (∼ 3×108 parameters). The network parameters were
optimized using Adam with a learning rate of 3× 10−4.

For the self-guided method, we observed that the noise η can
be drawn from different distributions such as the normal or uniform
distribution with essentially identical performance. For our exper-
iments we draw η from U(0,m), where m is 1

2
of the maximum

value of the magnitude of zzz. In this case, zzz is also optimized using
Adam with a learning rate of 1 × 10−1. At each iteration, we es-
timated the expectation inside the loss function using 4 realizations
of η. For all three unsupervised methods besides compressed sens-
ing, the data correction outlined in Section 2.6 was applied. Since
the supervised U-Net is a pure image-domain network, there was no

1https://github.com/mikgroup/sigpy
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Fig. 4: Error in the low and high frequencies of the reconstruction,
with different methods plotted over the iterations at 4x undersam-
pling. In general, self-guided DIP demonstrates better convergence
in both frequency bands when compared to the other methods.

post-processing performed.

Evaluation. We tested each of the methods for performing recon-
structions at 4x acceleration (25.0% sampling) and 8x acceleration
(12.5% sampling). Variable density 1-D random Cartesian (phase-
encode) undersampling was performed in all cases. We quantified
the reconstruction quality of the different methods using the peak
signal-to-noise ratio (PSNR) in decibels (dB). We also computed the
frequency band metric to study the spectral bias and overfitting in
each method.

Ax Vanilla Reference- CS Self-Guided Supervised
DIP Guided Recon DIP U-Net

4x 30.2 33.17 29.3 33.59 33.15
8x 28.75 30.23 27.8 30.72 30.27

Table 1: Average reconstruction PSNR values (in dB) for 15 images
at 4x and 8x undersampling or acceleration (Ax).

3.1. Results

Table 1 provides a comparison of the average PSNR values for re-
construction over the testing set at both 4x and 8x acceleration. The
proposed self-guided DIP outperforms the vanilla DIP, the reference-
guided DIP, compressed sensing, and even the supervised model
trained on many images. Visual comparisons provided in Figs. 5
and 6 for 8x and 4x undersampling also show the benefits offered by
self-guided DIP.

We also conducted experiments to understand the reconstruc-
tion of different frequencies across the three DIP-based methods. To
do this, we used the same frequency band metric introduced previ-
ously. We computed this metric over 5 images for the 4x acceler-
ation, and the average result is shown in Fig. 4. We observe that
the self-guided method shows reduced spectral bias and compared
to the others (high frequencies are reconstructed sooner and more
accurately), and also shows less overfitting in both frequency bands
considered, especially compared to vanilla DIP.

4. CONCLUSIONS

We proposed a novel self-guided deep MRI reconstruction technique
that iteratively optimizes the network input while also training a re-
construction model that is robust to large random perturbations of
this input. This was achieved by introducing a new regularization
term that encourages the reconstructor to act as a denoiser. Empiri-
cally, we demonstrated promising results on the multi-coil FastMRI

Ground Truth Supervised U-Net Reference-Guided

PSNR = ∞ dB PSNR = 30.45 dB PSNR = 30.32 dB
Self-Guided CS Reconstruction Vanilla DIP

PSNR = 31.01 dB PSNR = 26.8 dB PSNR = 28.26 dB

Fig. 5: Comparison of reconstructions of a knee image using the
proposed self-guided method at 8x acceleration versus supervised
learning, vanilla DIP, compressed sensing, and reference-guided re-
construction. The inset panel on the top left in each image corre-
sponds to a region of interest (indicated by the green bounding box
in the image) in the image, while the inset panel on the top right de-
picts the corresponding error map.

Ground Truth Supervised U-Net Reference-Guided

PSNR = ∞ dB PSNR = 35.14 dB PSNR = 35.45 dB
Self-Guided CS Reconstruction Vanilla DIP

PSNR = 35.75 dB PSNR = 31.2 dB PSNR = 33.2 dB

Fig. 6: Same comparisons/setup as Fig. 5, but for 4x acceleration.

data set. Notably, however, this approach does not involve any pre-
training, and can thus readily handle changes in the measurement
data. Moreover, this self-guided method showed better performance
than the same model trained globally in a supervised manner on a
large data set (with lengthy training times). This shows that highly
adaptive learning approaches may have the potential to outperform
traditional data-driven learning approaches in image reconstruction.
In the future, we hope to carry out more theoretical analyses to bet-
ter understand the performance of both vanilla and self-guided DIP
for MRI reconstruction. In particular, neural tangent kernel analy-
sis is a technique that has recently led to progress in this direction,
and we believe the analysis could be extended to these cases. We
also plan to study whether similar self-guided schemes could im-
prove the performance of DIP for other tasks, such as denoising or
super-resolution.
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