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Main Message

Throughout training of deep linear networks, the gradient descent
(GD) dynamics possesses certain parsimonious structures.
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Main Message

The parsimonious structures in GD dynamics leads to

• Efficient training via network compression

• Better understandings of hierarchical representations
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Law of Parsimony in Gradient Dynamics

Setup on Deep Linear Networks

• Training data {(xi,yi)}Ni=1 ⊂ Rdx × Rdy with

X = [x1 x2 . . . xN ] ∈ Rdx×N , Y = [y1 y2 . . . yN ] ∈ Rdy×N

• Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

where Wl ∈ Rdl×dl−1 and Θ = {Wl}Ll=1.

• Loss function:

min
Θ

ℓ(Θ) =
1

2

N∑
i=1

∥fΘ(xi)− yi∥2F =
1

2
∥WL:1X − Y ∥2F .
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

• Orthogonal initialization. We use ε-scale orthogonal matrices for
some ε > 0, with

W⊤
l (0)Wl(0) = ε2I or Wl(0)W

⊤
l (0) = ε2I, ∀l ∈ [L],

depending on the size of Wl.

• Learning dynamics of GD. We update all weights via GD for
t = 1, 2, . . . as

Wl(t) = (1− ηλ)Wl(t− 1)− η∇Wl
ℓ(Θ(t− 1)), ∀ l ∈ [L],

where η > 0 is the learning rate and λ ≥ 0 controls weight decay.
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

• The weight matrices are square except the last layer, i.e.,
dx = d1 = d2 = · · · = dL−1 = d for some d ∈ N+.

• The input data is whitened in the sense that XX⊤ = Idx .
1

• The cross correlation matrix Y X⊤ has certain low-dimensional
structures (e.g., low-rank or wide matrix).

Throughout training of deep networks, the gradient descent leads to
certain parsimonious structures in the weight matrices.

1For any full rank X ∈ Rdx×N with N ≥ dx, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs
We train a L = 3 layer DLN with dx = dy = 30 and r := rank(Y ) = 3.

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

• Left: the evolution of singular values σ1i(t) throughout training t ≥ 0;

• Middle: the evolution of ∠(v1i(t),v1i(0)) throughout training t ≥ 0;

• Right: the evolution of ∠(u1i(t),u1i(0)) throughout training t ≥ 0.
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Law of Parsimony in Gradient Dynamics
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.
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Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

Theorem (Yaras et al.’23)

Suppose we train an L-layer DLN fΘ(·) on (X,Y ) via GD, the iterates
{Wl(t)}Ll=1 for all t ≥ 0 satisfy the following:

• Case 1: Suppose Y X⊤ ∈ Rdy×dx is of rank r ∈ N+ with dy = dx,
and m = dx − 2r > 0. Then ∃ {Ul}Ll=1 ⊆ Od and {Vl}Ll=1 ⊆ Od

satisfying Vl+1 = Ul for all l ∈ [L− 1], such that Wl(t) admits the
following decomposition

Wl(t) = Ul

[
W̃l(t) 0
0 ρ(t)Im

]
V ⊤
l , ∀l ∈ [L− 1], t ≥ 0,

where W̃l(t) ∈ R2r×2r for all l ∈ [L− 1] with W̃l(0) = εI2r.

• Case 2: Suppose Y X⊤ ∈ Rdy×dx with dy = r and
m := dx − 2dy > 0. Similar results hold with different ρ(t).
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Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

• Dynamics of singular values and vectors of weight matrices.
Let W̃l(t) = Ũl(t)Σ̃l(t)Ṽ

⊤
l (t), we can rewrite our decomposition as

Wl(t) =
[
Ul,1Ũl(t) Ul,2

] [
Σ̃l(t) 0
0 ρ(t)Im

] [
Vl,1Ṽl(t) Vl,2

]⊤
,

• Invariance of subspaces in the weights. Both Ul,2 and Vl,2 of size
d− 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 2r!

• Implicit low-rank bias.2 As limε→0 ρ(t) = 0 for all t ≥ 0, all the
weights Wl(t) and the end-to-end matrix WL:1(t) are inherently
low-rank (e.g., at most rank 2r).

2M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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Ul,1Ũl(t) Ul,2

] [
Σ̃l(t) 0
0 ρ(t)Im

] [
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.

Figure: Evolution of SVD of weight matrices with momentum.
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Efficient Deep Matrix Completion via Network Compression

Main Message

Figure: Efficient training of deep linear networks.

The law of parsimony in GD leads to efficient network compression.
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Efficient Deep Matrix Completion via Network Compression

Problem Setup for Deep Matrix Completion

Consider recovering Φ ∈ Rd×d with r := rank(Φ) ≪ d with minimum
number of observation encoded by Ω ∈ {0, 1}d×d:

min
Θ

ℓmc(Θ) :=
1

2
∥Ω⊙ (WL:1 −Φ)∥2F .

• If full observation Ω = 1d1
⊤
d available, the problem simplifies to deep

matrix factorization.

• If the network depth L = 2, it reduces to the Burer-Monteiro
factorization formulation.

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD June 30, 2023 14 / 34
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Efficient Deep Matrix Completion via Network Compression

Why Deep Matrix Factorization and Overparameterization?

• Benefits of Depth (Left): Improved sample complexity3 and less
prone to overfitting.

• Benefits of Width (Right): Increasing the width of the network
results in accelerated convergence in terms of iterations.

3Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32.
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Efficient Deep Matrix Completion via Network Compression

Overparameterization: A Double Edged Sword

Figure: Efficient training of deep linear networks.

Cons: Increasing the depth and width of the network leads to much
more parameters. Could be expensive to optimize!
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Efficient Deep Matrix Completion via Network Compression

How to Achieve the Best of Two Worlds?

• Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

min
Θ

1

2
∥WL:1 −Φ∥2F ,

with Ω = 1d1
⊤
d . We optimize the problem via GD from ε-scale

orthogonal initialization.

• Law of parsimony in GD for the end-to-end matrix WL:1:

WL:1(t) =
[
UL,1 UL,2

] [W̃L:1(t) 0
0 ρL(t)Im

] [
V ⊤
1,1

V ⊤
1,2

]
= UL,1W̃L:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2,

where we overestimate the rank r̂ > r and let m = d− 2r̂.
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Efficient Deep Matrix Completion via Network Compression

How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1W̃L:1(t)V
⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1W̃L:1(t)V
⊤
1,1, ∀t ≥ 0,

Claim: With small initialization, running GD on the original weights
{Wl}Ll=1 ⊆ Rd×d is almost equivalent to running GD on the com-

pressed weights {W̃l}Ll=1 ⊆ R2r̂×2r̂.
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Efficient Deep Matrix Completion via Network Compression

The Simple Case: Deep Matrix Factorization

Figure: Efficient training of deep linear networks.

Comparison on the number of parameters: original network Ld2

vs. compressed network Lr̂2.
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Efficient Deep Matrix Completion via Network Compression

From Deep Matrix Factorization to Completion?

• However, directly applying our approach from deep matrix
factorization to completion does not work well...

• This is due to the fact that the law of parsimony in GD:

WL:1(t) ≈ UL,1W̃L:1(t)V
⊤
1,1, ∀t ≥ 0,

does NOT hold, because Ω⊙Φ is not low-rank for arbitrary Ω.
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Efficient Deep Matrix Completion via Network Compression

From Deep Matrix Factorization to Completion?

• Remedy: update both V1,1(t) and UL,1(t) factors via GD with a
discrepant learning rate γη in the “compressed network”:4

W (γ)
comp(t) := UL,1(t)W̃L:1(t)V

⊤
1,1(t).

• Complexity: original network O(Ld2) vs compressed network O(Ld).

4This is done simultaneously with the GD updates on the subnetwork W̃L:1(t), which
uses the original learning rate η.
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Understanding Hierarchical Representations in Deep Neural
Networks

Main Message

For classification problem, the law of parsimony in GD explains pro-
gressive feature separation in deep linear networks.
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Understanding Hierarchical Representations in Deep Neural
Networks

Problem Setup: Train DLNs for Classification Problems
• Balanced Training Data: {(xk,i,yk)}i∈[n],k∈[K] for K-class

classification: xk,i ∈ Rd is the i-th sample in the k-th class, yk ∈ RK

is an one-hot label.
• Feature in the l-th Layer of DLN:

zl
k,i := Wl . . .W1xk,i = Wl:1xk,i, ∀l ∈ [L],

• Measure of Data Separation: To characterize the network’s
capability to separate data across layers, we use a metric (He & Su.

2022, Tirer et al. (2022))

Dl := trace(Σl
W )/trace(Σl

B),

Σl
W =

1

nK

K∑
k=1

n∑
i=1

(
zl
k,i − zl

k

)(
zk,i − zl

k

)⊤
, Σl

B =
1

K

K∑
k=1

(
zl
k − zl

G

)(
zl
k − zl

G

)⊤
.
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• Measure of Data Separation: To characterize the network’s
capability to separate data across layers, we use a metric (He & Su.

2022, Tirer et al. (2022))

Dl := trace(Σl
W )/trace(Σl

B),

Σl
W =

1

nK

K∑
k=1

n∑
i=1

(
zl
k,i − zl

k

)(
zk,i − zl

k

)⊤
, Σl

B =
1

K

K∑
k=1

(
zl
k − zl

G

)(
zl
k − zl

G

)⊤
.
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Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Separation with Linear Decay Rate

Figure: Linear decay of feature separation in trained deep networks.
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Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Separation with Linear Decay Rate

Theorem (Wang et al.’23)

Suppose we train a L-layer DLN with parameters Θ = {Wl}Ll=1 via GD
with orthogonal initialization of ε-scaling, where input X ∈ Rd×N is
orthogonal and square and dl = d > 2K. If Θ satisfies the following:

• Global Optimality: WL:1X = Y .

• Balancedness: For all weights

W⊤
l+1Wl+1 = WlW

⊤
l , ∀l ∈ [L− 2],

∥W⊤
L WL −WL−1W

⊤
L−1∥F ≤ ε2

√
d−K.

• Unchanged Spectrum: There exists an index set A ⊆ [d] with
|A| = d− 2K such that for all l ∈ [L− 1] that σi(Wl) = ε, ∀i ∈ A.

Then, it holds for all l = 0, 1, . . . , L− 2 that

Dl+1/Dl ≤ 2(
√
K + 1)ε2.
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Understanding Hierarchical Representations in Deep Neural
Networks

Effects of Initialization Scale ε

As predicted by our theory, the decay ratio critically depends on the scale
of initialization ε:

Figure: Linear decay of feature separation measure Dl in trained deep
networks with varying initialization scale ε.
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Understanding Hierarchical Representations in Deep Neural
Networks

Is the Orthogonal Initialization Critical?

Figure: Linear decay of feature separation in trained DLNs with different
initialization types (left to right: Orth., Norm, Unif).
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Conclusion

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.

• Efficient training via network compression.

• Understanding representations in deep networks.

Thank You! Questions?



Call for Papers

• IEEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

• Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.



Conclusion

Tradeoffs Between Decay Rate and Convergence

However, there is trade-off between decay rate ε and training speed of GD:
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Figure: The dynamics of GD for DLNs with learning rate η = 0.1.
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Conclusion

Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow
network of the same width 2r̂ would perform just as efficiently as the
compressed network with a true width of d ≫ r̂?

Figure: Efficiency of compressed networks vs. narrow network.
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Conclusion

Compressed Networks vs. Narrow Networks?

Figure: Efficiency of compressed networks vs. narrow network.

Answer: No! Over-parameterized networks are “easier” to train.
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