On the Emergence of Low-Dim Invariant Subspace in

Gradient Descent for Learning Deep Linear Networks

Qing Qu

EECS, University of Michigan

September 7, 2023

< □ > < □ > < □ > < □ > < □ > < □ >

Law of Parsimony in GD

Multi-Class Image Classification Problem

• Goal: Learn a deep network predictor from a labelled training dataset $\{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}); i = 1, \cdots, n\}.$

¹If not, we can use data augmentation to make them balanced \rightarrow $\leftarrow \equiv \rightarrow \leftarrow$

Multi-Class Image Classification Problem

- Goal: Learn a deep network predictor from a labelled training dataset $\{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}); i = 1, \cdots, n\}.$
- Training Labels: $k = 1, \ldots, K$
 - K = 10 classes (MNIST, CIFAR10, etc)
 - K = 1000 classes (ImageNet)

¹If not, we can use data augmentation to make them balanced by a

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

Multi-Class Image Classification Problem

- Goal: Learn a deep network predictor from a labelled training dataset $\{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}); i = 1, \cdots, n\}.$
- Training Labels: $k = 1, \ldots, K$
 - K = 10 classes (MNIST, CIFAR10, etc)
 - K = 1000 classes (ImageNet)

• For simplicity, we assume **balanced** dataset where each class has *n* training samples.¹

¹If not, we can use data augmentation to make them balanced \rightarrow (\equiv) (\equiv)

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

Deep Neural Network Classifiers

• A vanilla multi-layer perception (MLP) network:

$$f_{\Theta}(\boldsymbol{x}) = \underbrace{\boldsymbol{W}_{L}}_{\text{linear classifer } \boldsymbol{W}} \underbrace{\sigma\left(\boldsymbol{W}_{L-1}\cdots\sigma(\boldsymbol{W}_{1}\boldsymbol{x}+\boldsymbol{b}_{1})+\boldsymbol{b}_{L-1}\right)}_{\text{feature } \phi_{\theta}(\boldsymbol{x})=:\boldsymbol{h}} + \boldsymbol{b}_{L}$$

• Features of each layer:

$$\boldsymbol{z}^{l} = \sigma \left(\boldsymbol{W}_{l-1} \cdots \sigma (\boldsymbol{W}_{1} \boldsymbol{x} + \boldsymbol{b}_{1}) + \boldsymbol{b}_{l-1} \right), l = 1, \cdots, L-1$$

< A I

Deep Neural Network Classifiers

• A vanilla multi-layer perception (MLP) network:

• Features of each layer:

$$\boldsymbol{z}^{l} = \sigma \left(\boldsymbol{W}_{l-1} \cdots \sigma (\boldsymbol{W}_{1} \boldsymbol{x} + \boldsymbol{b}_{1}) + \boldsymbol{b}_{l-1} \right), l = 1, \cdots, L-1$$

• Progressive linear separation through nonlinear layers:

Training a 10-layer nonlinear MLP network on CIFAR-10

Training a 10-layer nonlinear MLP network on CIFAR-10

Training a 10-layer nonlinear MLP network on CIFAR-10

Progressive feature "compression" and "linear separation" from shallow to deep layers.

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GE

September 7, 2023 4 / 53

< 4 ₽ >

Training a 10-layer multi-layer perception (MLP) nonlinear network for classification problems (CIFAR-10)

Progressive feature "compression" and "linear separation" from shallow to deep layers.

Qing Qu (EECS, University of Michigan)

September 7, 2023 5 / 53

Implication I: Invariant Subspaces of in Deeper Layers

We track the learning dynamics of singular values in the penultimate layer a wide range of models (linear model, MLP, toy ViT, ViT-base):

In the deeper layers, feature learning *only* happens in a low-dimensional invariant subspace of the weight matrices.

Implication II: Linear Separability in Deeper Layers

Training a hybrid (4-layer MLP + 6-layer linear) network on CIFAR-10

Progressive "compression" and "linear separation" from shallow to deep layers.

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GE

September 7, 2023 7 / 53

Implication II: Linear Separability in Deeper Layers

Training a hybrid (4-layer MLP + 6-layer linear) network on CIFAR-10

Progressive "compression" and "linear separation" from shallow to deep layers.

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

September 7, 2023 8 / 53

Implication II: Linear Separability in Deeper Layers

Training a hybrid (4-layer MLP + 6-layer linear) network on CIFAR-10

Progressive "compression" and "linear separation" from shallow to deep layers.

< □ > < □ > < □ > < □ > < □ > < □ >

Deep linear network (DLN):

$$f_{\boldsymbol{\Theta}}(\boldsymbol{x}) := \boldsymbol{W}_{L} \cdots \boldsymbol{W}_{1} \boldsymbol{x} = \boldsymbol{W}_{L:1} \boldsymbol{x},$$

has been often used as prototypes for studying nonlinear counterparts:

3

E 6 4 E 6

Image: A matrix

Deep linear network (DLN):

$$f_{\boldsymbol{\Theta}}(\boldsymbol{x}) := \boldsymbol{W}_{L} \cdots \boldsymbol{W}_{1} \boldsymbol{x} = \boldsymbol{W}_{L:1} \boldsymbol{x},$$

has been often used as prototypes for studying nonlinear counterparts:

 It possess similar linear separability in deeper layers as nonlinear networks;

E 6 4 E 6

Deep linear network (DLN):

$$f_{\boldsymbol{\Theta}}(\boldsymbol{x}) := \boldsymbol{W}_{L} \cdots \boldsymbol{W}_{1} \boldsymbol{x} = \boldsymbol{W}_{L:1} \boldsymbol{x},$$

has been often used as prototypes for studying nonlinear counterparts:

- It possess similar linear separability in deeper layers as nonlinear networks;
- The features possess similar compression and separation across layers;

4 1 1 4 1 1 1

Deep linear network (DLN):

$$f_{\boldsymbol{\Theta}}(\boldsymbol{x}) := \boldsymbol{W}_{L} \cdots \boldsymbol{W}_{1} \boldsymbol{x} = \boldsymbol{W}_{L:1} \boldsymbol{x},$$

has been often used as prototypes for studying nonlinear counterparts:

- It possess similar linear separability in deeper layers as nonlinear networks;
- The features possess similar compression and separation across layers;
- The weights possess **similar low-rank structures** throughout training.

- 4 首下 4 首下

Study of the training DLNs

$$\min_{\boldsymbol{\Theta}} \ \ell(\boldsymbol{\Theta}) = \frac{1}{2} \sum_{i=1}^{N} \|f_{\boldsymbol{\Theta}}(\boldsymbol{x}_i) - \boldsymbol{y}_i\|_F^2 = \frac{1}{2} \|\boldsymbol{W}_{L:1}\boldsymbol{X} - \boldsymbol{Y}\|_F^2.$$

could be highly nontrivial:

< 行

э

Study of the training DLNs

$$\min_{\boldsymbol{\Theta}} \ \ell(\boldsymbol{\Theta}) = \frac{1}{2} \sum_{i=1}^{N} \|f_{\boldsymbol{\Theta}}(\boldsymbol{x}_i) - \boldsymbol{y}_i\|_F^2 = \frac{1}{2} \|\boldsymbol{W}_{L:1} \boldsymbol{X} - \boldsymbol{Y}\|_F^2.$$

could be highly nontrivial:

- The loss landscape is highly nonconvex, with many saddle points;
- It is overparameterized, with infinitely many local solutions;
- The gradient descent learning dynamics could be highly nonlinear.

Main Results

Throughout training of deep linear networks, the gradient descent (GD) dynamics possesses certain parsimonious structures.

< □ > < □ > < □ > < □ > < □ > < □ >

Main Results

The parsimonious structures in GD dynamics leads to

• Efficient low-rank training and network compression

4 T

Main Results

The parsimonious structures in GD dynamics leads to

- Efficient low-rank training and network compression
- Better understandings of hierarchical representations

Outline

1 Law of Parsimony in Gradient Dynamics

2 Efficient Low-rank Training & Network Compression

3 Understanding Hierarchical Representations in Deep Neural Networks

(日) (四) (문) (문) (문)

4 Conclusion

Deep Linear Networks

• Training data $\{({m x}_i, {m y}_i)\}_{i=1}^N \subset \mathbb{R}^{d_x} imes \mathbb{R}^{d_y}$ with

 $oldsymbol{X} = [oldsymbol{x}_1 \ oldsymbol{x}_2 \ \dots \ oldsymbol{x}_N] \in \mathbb{R}^{d_x imes N}, \quad oldsymbol{Y} = [oldsymbol{y}_1 \ oldsymbol{y}_2 \ \dots \ oldsymbol{y}_N] \in \mathbb{R}^{d_y imes N}$

• Deep linear network (DLN):

$$f_{\boldsymbol{\Theta}}(\boldsymbol{x}) := \boldsymbol{W}_{L} \cdots \boldsymbol{W}_{1} \boldsymbol{x} = \boldsymbol{W}_{L:1} \boldsymbol{x},$$

where $\boldsymbol{W}_{l} \in \mathbb{R}^{d_{l} \times d_{l-1}}$ and $\boldsymbol{\Theta} = \{\boldsymbol{W}_{l}\}_{l=1}^{L}$.

Loss function:

$$\min_{\boldsymbol{\Theta}} \ \ell(\boldsymbol{\Theta}) = \frac{1}{2} \sum_{i=1}^{N} \|f_{\boldsymbol{\Theta}}(\boldsymbol{x}_i) - \boldsymbol{y}_i\|_F^2 = \frac{1}{2} \|\boldsymbol{W}_{L:1}\boldsymbol{X} - \boldsymbol{Y}\|_F^2.$$

Qing Qu (EECS, University of Michigan)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 Orthogonal initialization. We use ε-scale orthogonal matrices for some ε > 0, with

$$\boldsymbol{W}_l^{\top}(0)\boldsymbol{W}_l(0) = \varepsilon^2 \boldsymbol{I} \quad \text{or} \quad \boldsymbol{W}_l(0)\boldsymbol{W}_l^{\top}(0) = \varepsilon^2 \boldsymbol{I}, \quad \forall l \in [L],$$

depending on the size of W_l .

E 6 4 E 6

 Orthogonal initialization. We use ε-scale orthogonal matrices for some ε > 0, with

 $\boldsymbol{W}_l^\top(0)\boldsymbol{W}_l(0) = \varepsilon^2\boldsymbol{I} \quad \text{or} \quad \boldsymbol{W}_l(0)\boldsymbol{W}_l^\top(0) = \varepsilon^2\boldsymbol{I}, \quad \forall l \in [L],$

depending on the size of W_l .

• Learning dynamics of GD. We update all weights via GD for $t = 1, 2, \ldots$ as

$$\boldsymbol{W}_{l}(t) = (1 - \eta \lambda) \boldsymbol{W}_{l}(t - 1) - \eta \nabla_{\boldsymbol{W}_{l}} \ell(\boldsymbol{\Theta}(t - 1)), \quad \forall \ l \in [L],$$

where $\eta > 0$ is the learning rate and $\lambda \ge 0$ controls weight decay.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We study the GD iterates for training DLNs under the following assumptions:

- The weight matrices are square except the last layer, i.e., $d_x = d_1 = d_2 = \cdots = d_{L-1} = d$ for some $d \in \mathbb{N}_+$.
- The input data is *whitened* in the sense that $oldsymbol{X}oldsymbol{X}^ op=oldsymbol{I}_{d_x}.^2$
- The cross correlation matrix YX[⊤] has certain *low-dimensional* structures (e.g., low-rank or wide matrix).

²For any full rank $X \in \mathbb{R}^{d_x \times N}$ with $N \ge d_x$, whitened data can always be obtained with a data pre-processing step such as preconditioning.

Qing Qu (EECS, University of Michigan)

We study the GD iterates for training DLNs under the following assumptions:

- The weight matrices are square except the last layer, i.e., $d_x = d_1 = d_2 = \cdots = d_{L-1} = d$ for some $d \in \mathbb{N}_+$.
- The input data is *whitened* in the sense that $oldsymbol{X}oldsymbol{X}^ op=oldsymbol{I}_{d_x}.^2$
- The cross correlation matrix YX[⊤] has certain *low-dimensional* structures (e.g., low-rank or wide matrix).

Throughout training of deep networks, the gradient descent leads to certain parsimonious structures in the weight matrices.

²For any full rank $X \in \mathbb{R}^{d_x \times N}$ with $N \ge d_x$, whitened data can always be obtained with a data pre-processing step such as preconditioning.

Figure: Evolution of SVD of the weight matrix $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$.

Figure: Evolution of SVD of the weight matrix $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$.

• Left: the evolution of singular values $\sigma_{1i}(t)$ throughout training $t \ge 0$;

Figure: Evolution of SVD of the weight matrix $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$.

- Left: the evolution of singular values $\sigma_{1i}(t)$ throughout training $t \ge 0$;
- Middle: the evolution of $\angle(\boldsymbol{v}_{1i}(t), \boldsymbol{v}_{1i}(0))$ throughout training $t \ge 0$;

・ロト ・ 同ト ・ ヨト ・ ヨト

Figure: Evolution of SVD of the weight matrix $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$.

- Left: the evolution of singular values $\sigma_{1i}(t)$ throughout training $t \ge 0$;
- Middle: the evolution of $\angle(\boldsymbol{v}_{1i}(t), \boldsymbol{v}_{1i}(0))$ throughout training $t \ge 0$;
- **Right:** the evolution of $\angle(\boldsymbol{u}_{1i}(t), \boldsymbol{u}_{1i}(0))$ throughout training $t \ge 0$.

hoot of the store the store the Singular Values

Qing Qu (EECS, University of Michigan)

SV Index (1) Right Singular Vectors

" " Heratio

September 7, 2023 19 / 53

æ

▶ < ≣ ▶

SV Index (a) " " " " " " "

Left Singular Vectors

The Evolution of Singular Spaces in GD Iterates for DLNs

Figure: Evolution of SVD of the weight matrix $W_1(t) = U_1(t)\Sigma_1(t)V_1(t)^{\top}$.

The GD learning process takes place only within a **minimal invariant subspace** of each weight matrix, while the remaining singular subspaces stay **unaffected** throughout training.

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

September 7, 2023 20 / 53

The Law of Parsimony in GD

Theorem (Yaras et al.'23)

Suppose we train an L-layer DLN $f_{\Theta}(\cdot)$ on (X, Y) via GD, the iterates $\{W_l(t)\}_{l=1}^L$ for all $t \ge 0$ satisfy the following:

• Case 1: Suppose $YX^{\top} \in \mathbb{R}^{d_y \times d_x}$ is of rank $r \in \mathbb{N}_+$ with $d_y = d_x$, and $m = d_x - 2r > 0$. Then $\exists \{U_l\}_{l=1}^L \subseteq \mathcal{O}^d$ and $\{V_l\}_{l=1}^L \subseteq \mathcal{O}^d$ satisfying $V_{l+1} = U_l$ for all $l \in [L-1]$, such that $W_l(t)$ admits the following decomposition

$$\boldsymbol{W}_{l}(t) = \boldsymbol{U}_{l} \begin{bmatrix} \widetilde{\boldsymbol{W}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t)\boldsymbol{I}_{m} \end{bmatrix} \boldsymbol{V}_{l}^{\top}, \quad \forall l \in [L-1], \ t \geq 0,$$

where $\widetilde{W}_l(t) \in \mathbb{R}^{2r \times 2r}$ for all $l \in [L-1]$ with $\widetilde{W}_l(0) = \varepsilon I_{2r}$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Theorem (Yaras et al.'23)

Suppose we train an L-layer DLN $f_{\Theta}(\cdot)$ on (X, Y) via GD, the iterates $\{W_l(t)\}_{l=1}^L$ for all $t \ge 0$ satisfy the following:

• Case 1: Suppose $YX^{\top} \in \mathbb{R}^{d_y \times d_x}$ is of rank $r \in \mathbb{N}_+$ with $d_y = d_x$, and $m = d_x - 2r > 0$. Then $\exists \{U_l\}_{l=1}^L \subseteq \mathcal{O}^d$ and $\{V_l\}_{l=1}^L \subseteq \mathcal{O}^d$ satisfying $V_{l+1} = U_l$ for all $l \in [L-1]$, such that $W_l(t)$ admits the following decomposition

$$\boldsymbol{W}_{l}(t) = \boldsymbol{U}_{l} \begin{bmatrix} \widetilde{\boldsymbol{W}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t)\boldsymbol{I}_{m} \end{bmatrix} \boldsymbol{V}_{l}^{\top}, \quad \forall l \in [L-1], \ t \geq 0,$$

where $\widetilde{W}_l(t) \in \mathbb{R}^{2r \times 2r}$ for all $l \in [L-1]$ with $\widetilde{W}_l(0) = \varepsilon I_{2r}$.

• Case 2: Suppose $YX^{\top} \in \mathbb{R}^{d_y \times d_x}$ with $d_y = r$ and $m := d_x - 2d_y > 0$. Similar results hold with different $\rho(t)$.

イロト イヨト イヨト 一日

• Dynamics of singular values and vectors of weight matrices. Let $\widetilde{W}_l(t) = \widetilde{U}_l(t)\widetilde{\Sigma}_l(t)\widetilde{V}_l^{\top}(t)$, we can rewrite our decomposition as

$$\boldsymbol{W}_{l}(t) = \begin{bmatrix} \boldsymbol{U}_{l,1} \widetilde{\boldsymbol{U}}_{l}(t) & \boldsymbol{U}_{l,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t) \boldsymbol{I}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{l,1} \widetilde{\boldsymbol{V}}_{l}(t) & \boldsymbol{V}_{l,2} \end{bmatrix}^{\top},$$

³M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23. https://minyoungg.github.io/overparam/

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

September 7, 2023 22 / 53

• Dynamics of singular values and vectors of weight matrices. Let $\widetilde{W}_l(t) = \widetilde{U}_l(t)\widetilde{\Sigma}_l(t)\widetilde{V}_l^{\top}(t)$, we can rewrite our decomposition as

$$\boldsymbol{W}_{l}(t) = \begin{bmatrix} \boldsymbol{U}_{l,1} \widetilde{\boldsymbol{U}}_{l}(t) & \boldsymbol{U}_{l,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t) \boldsymbol{I}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{l,1} \widetilde{\boldsymbol{V}}_{l}(t) & \boldsymbol{V}_{l,2} \end{bmatrix}^{\top},$$

 Invariance of subspaces in the weights. Both U_{l,2} and V_{l,2} of size d - 2r are unchanged throughout training. The learning process occurs only within an invariant subspace of dimension 2r!

³M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23. https://minyoungg.github.io/overparam/

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

September 7, 2023 22 / 53

• Dynamics of singular values and vectors of weight matrices. Let $\widetilde{W}_l(t) = \widetilde{U}_l(t)\widetilde{\Sigma}_l(t)\widetilde{V}_l^{\top}(t)$, we can rewrite our decomposition as

$$\boldsymbol{W}_{l}(t) = \begin{bmatrix} \boldsymbol{U}_{l,1} \widetilde{\boldsymbol{U}}_{l}(t) & \boldsymbol{U}_{l,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}}_{l}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho(t) \boldsymbol{I}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{l,1} \widetilde{\boldsymbol{V}}_{l}(t) & \boldsymbol{V}_{l,2} \end{bmatrix}^{\top},$$

- Invariance of subspaces in the weights. Both U_{l,2} and V_{l,2} of size d - 2r are unchanged throughout training. The learning process occurs only within an invariant subspace of dimension 2r!
- Implicit low-rank bias.³ As $\lim_{\varepsilon \to 0} \rho(t) = 0$ for all $t \ge 0$, all the weights $W_l(t)$ and the end-to-end matrix $W_{L:1}(t)$ are inherently low-rank (e.g., at most rank 2r).

³M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23. https://minyoungg.github.io/overparam/

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

September 7, 2023 22 / 53

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.

Qing Qu (EECS, University of Michigan)

Law of Parsimonv in GD

September 7, 2023 23 / 53

Outline

1 Law of Parsimony in Gradient Dynamics

2 Efficient Low-rank Training & Network Compression

3 Understanding Hierarchical Representations in Deep Neural Networks

4 Conclusion

Main Message

Figure: Efficient training of deep linear networks.

The law of parsimony in GD leads to efficient network compression.

Deep Matrix Completion

Consider recovering $\Phi \in \mathbb{R}^{d \times d}$ with $r := \operatorname{rank}(\Phi) \ll d$ with minimum number of observation encoded by $\Omega \in \{0, 1\}^{d \times d}$:

$$\min_{\boldsymbol{\Theta}} \ell_{\mathrm{mc}}(\boldsymbol{\Theta}) := \frac{1}{2} \| \boldsymbol{\Omega} \odot (\boldsymbol{W}_{L:1} - \boldsymbol{\Phi}) \|_{F}^{2}.$$

Deep Matrix Completion

Consider recovering $\Phi \in \mathbb{R}^{d \times d}$ with $r := \operatorname{rank}(\Phi) \ll d$ with minimum number of observation encoded by $\Omega \in \{0, 1\}^{d \times d}$:

$$\min_{\boldsymbol{\Theta}} \ell_{\mathrm{mc}}(\boldsymbol{\Theta}) := \frac{1}{2} \| \boldsymbol{\Omega} \odot (\boldsymbol{W}_{L:1} - \boldsymbol{\Phi}) \|_{F}^{2}.$$

• If full observation $\Omega = \mathbf{1}_d \mathbf{1}_d^\top$ available, the problem simplifies to deep matrix factorization.

Deep Matrix Completion

Consider recovering $\Phi \in \mathbb{R}^{d \times d}$ with $r := \operatorname{rank}(\Phi) \ll d$ with minimum number of observation encoded by $\Omega \in \{0, 1\}^{d \times d}$:

$$\min_{\boldsymbol{\Theta}} \ell_{\mathrm{mc}}(\boldsymbol{\Theta}) := \frac{1}{2} \| \boldsymbol{\Omega} \odot (\boldsymbol{W}_{L:1} - \boldsymbol{\Phi}) \|_{F}^{2}.$$

- If full observation $\Omega = \mathbf{1}_d \mathbf{1}_d^\top$ available, the problem simplifies to deep matrix factorization.
- If the network depth L = 2, it reduces to the Burer-Monteiro factorization formulation.

Why Deep Matrix Factorization and Overparameterization?

- Benefits of Depth (Left): Improved sample complexity⁴ and less prone to overfitting.
- Benefits of Width (Right): Increasing the width of the network results in accelerated convergence in terms of iterations.

⁴Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep matrix factorization. Advances in Neural Information Processing Systems, 32

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GD

Overparameterization: A Double Edged Sword

Figure: Efficient training of deep linear networks.

Cons: Increasing the depth and width of the network leads to much **more parameters**. Could be **expensive to optimize!**

Qing Qu (EECS, University of Michigan)

Law of Parsimony in GE

September 7, 2023 27 / 53

na a

• **Deep matrix factorization.** As a starting point, consider the simple deep matrix factorization setting:

$$\min_{\boldsymbol{\Theta}} \ \frac{1}{2} \| \boldsymbol{W}_{L:1} - \boldsymbol{\Phi} \|_F^2,$$

with $\Omega = \mathbf{1}_d \mathbf{1}_d^{\top}$. We optimize the problem via GD from ε -scale orthogonal initialization.

4 1 1 4 1 1 1

• **Deep matrix factorization.** As a starting point, consider the simple deep matrix factorization setting:

$$\min_{\boldsymbol{\Theta}} \ \frac{1}{2} \| \boldsymbol{W}_{L:1} - \boldsymbol{\Phi} \|_F^2,$$

with $\Omega = \mathbf{1}_d \mathbf{1}_d^{\top}$. We optimize the problem via GD from ε -scale orthogonal initialization.

• Law of parsimony in GD for the end-to-end matrix $W_{L:1}$:

$$\begin{split} \boldsymbol{W}_{L:1}(t) &= \begin{bmatrix} \boldsymbol{U}_{L,1} & \boldsymbol{U}_{L,2} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{W}}_{L:1}(t) & \boldsymbol{0} \\ \boldsymbol{0} & \rho^L(t) \boldsymbol{I}_m \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{1,1}^\top \\ \boldsymbol{V}_{1,2}^\top \end{bmatrix} \\ &= \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^\top + \rho^L(t) \boldsymbol{U}_{L,2} \boldsymbol{V}_{1,2}^\top, \end{split}$$

where we overestimate the rank $\hat{r} > r$ and let $m = d - 2\hat{r}$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

• The effects of small initialization ε and depth L:

$$\begin{aligned} \boldsymbol{W}_{L:1}(t) &= \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top} + \rho^{L}(t) \boldsymbol{U}_{L,2} \boldsymbol{V}_{1,2}^{\top} \\ &\approx \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \geq 0, \end{aligned}$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

• The effects of small initialization ε and depth L:

$$\begin{aligned} \boldsymbol{W}_{L:1}(t) &= \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top} + \boldsymbol{\rho}^{L}(t) \boldsymbol{U}_{L,2} \boldsymbol{V}_{1,2}^{\top} \\ &\approx \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \geq 0, \end{aligned}$$

Claim: With small initialization, running GD on the original weights $\{W_l\}_{l=1}^L \subseteq \mathbb{R}^{d \times d}$ is **almost equivalent** to running GD on the compressed weights $\{\widetilde{W}_l\}_{l=1}^L \subseteq \mathbb{R}^{2\widehat{r} \times 2\widehat{r}}$.

4 AR N 4 E N 4 E N

The Simple Case: Deep Matrix Factorization

Figure: Efficient training of deep linear networks.

Comparison on the number of parameters: original network Ld^2 vs. compressed network $L\hat{r}^2$.

From Deep Matrix Factorization to Completion?

• However, directly applying our approach from deep matrix factorization to completion does not work well...

From Deep Matrix Factorization to Completion?

- However, directly applying our approach from deep matrix factorization to completion does not work well...
- This is due to the fact that the law of parsimony in GD:

$$\boldsymbol{W}_{L:1}(t) ~\approx~ \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \geq 0,$$

does NOT hold, because $\Omega \odot \Phi$ is not low-rank for arbitrary Ω .

• The effects of small initialization ε and depth L:

$$\begin{aligned} \boldsymbol{W}_{L:1}(t) &= \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top} + \rho^{L}(t) \boldsymbol{U}_{L,2} \boldsymbol{V}_{1,2}^{\top} \\ &\approx \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \geq 0, \end{aligned}$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

• The effects of small initialization ε and depth L:

$$\begin{aligned} \boldsymbol{W}_{L:1}(t) &= \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top} + \boldsymbol{\rho}^{L}(t) \boldsymbol{U}_{L,2} \boldsymbol{V}_{1,2}^{\top} \\ &\approx \boldsymbol{U}_{L,1} \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}, \quad \forall t \geq 0, \end{aligned}$$

Claim: With small initialization, running GD on the original weights $\{W_l\}_{l=1}^L \subseteq \mathbb{R}^{d \times d}$ is **almost equivalent** to running GD on the compressed weights $\{\widetilde{W}_l\}_{l=1}^L \subseteq \mathbb{R}^{2\widehat{r} \times 2\widehat{r}}$.

4 AR N 4 E N 4 E N

From Deep Matrix Factorization to Completion?

Remedy: update both V_{1,1}(t) and U_{L,1}(t) factors via GD with a discrepant learning rate γη in the "compressed network":⁵

$$\boldsymbol{W}_{\text{comp}}^{(\gamma)}(t) := \boldsymbol{U}_{L,1}(t) \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}(t).$$

⁵This is done simultaneously with the GD updates on the subnetwork $\widetilde{W}_{L:1}(t)$, which uses the original learning rate η .

Qing Qu (EECS, University of Michigan)

From Deep Matrix Factorization to Completion?

Remedy: update both V_{1,1}(t) and U_{L,1}(t) factors via GD with a discrepant learning rate γη in the "compressed network":⁵

$$\boldsymbol{W}_{\text{comp}}^{(\gamma)}(t) := \boldsymbol{U}_{L,1}(t) \widetilde{\boldsymbol{W}}_{L:1}(t) \boldsymbol{V}_{1,1}^{\top}(t).$$

• **Complexity:** original network $O(Ld^2)$ vs compressed network O(Ld).

⁵This is done simultaneously with the GD updates on the subnetwork $\widetilde{W}_{L:1}(t)$, which uses the original learning rate η .

Qing Qu (EECS, University of Michigan)

Low-Rank Training of Nonlinear Networks?

Factorize the weights of deeper layers in nonlinear networks into low-rank counterparts throughout training:

$$\mathbf{W_{new}}=\mathbf{B}\mathbf{A}$$

where $\mathbf{B} \in \mathbb{R}^{d \times r}, \mathbf{A} \in \mathbb{R}^{r \times d}$ are trainable parameters.

- The rank r of factorization should correspond to class number K, and relaxed in shallower layers.
- This can reduce the memory and latency during training, without harming the performance.

Low-Rank Training of Nonlinear Networks?

Comparison between normal training and low rank training on MNIST, FashionMNIST, USPS using a MLP with 3 hidden layers. We factorized the weights of the last two hidden layers, and reduced the memory and latency with comparable accuracy.

Method	# Params	Memory	FLOPs	Avg Acc.
Normal training	5.59M	0.376 GiB	1.65 TFLOPs	95.09
Low rank(r=10)	1.67M	0.113 GiB	1.17 TFLOPs	94.57
Low rank(r=1)	1.59M	0.108 GiB	1.17 TFLOPs	90.86

- 4 回 ト 4 ヨ ト 4 ヨ ト

Low-rank Adaptation (LoRA) of Large Models?

LoRA is an SoTA parameter-efficient adaptation technique for transformers:

$$\mathbf{W}_{\mathbf{new}} = \mathbf{W}_{\mathbf{0}} + \mathbf{B}\mathbf{A} \tag{1}$$

where $\mathbf{B} \in \mathbb{R}^{d \times r}$, $\mathbf{A} \in \mathbb{R}^{r \times d}$ are trainable parameters.

Method	# Params	CIFAR10	CIFAR100
Full-model	86.7M/86.7M	99.07	93.27
LoRA	0.33M/86.9M	98.97	92.85
AdaLoRA	0.33M/86.9M	98.87	92.93

イロト 不得 トイヨト イヨト 二日

Outline

1 Law of Parsimony in Gradient Dynamics

2 Efficient Low-rank Training & Network Compression

3 Understanding Hierarchical Representations in Deep Neural Networks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

4 Conclusion

Networks

Main Message

For classification problem, the law of parsimony in GD explains progressive feature separation in deep linear networks.

Problem Setup: Train DLNs for Classification Problems

- Balanced Training Data: $\{(x_{k,i}, y_k)\}_{i \in [n], k \in [K]}$ for K-class classification: $x_{k,i} \in \mathbb{R}^d$ is the *i*-th sample in the *k*-th class, $y_k \in \mathbb{R}^K$ is an one-hot label.
- Feature in the *l*-th Layer of DLN:

$$oldsymbol{z}_{k,i}^l := oldsymbol{W}_l \dots oldsymbol{W}_1 oldsymbol{x}_{k,i} = oldsymbol{W}_{l:1} oldsymbol{x}_{k,i}, \; orall l \in [L],$$

• With-class and between-class covariance matrices

$$\boldsymbol{\Sigma}_{W}^{l} = \frac{1}{nK} \sum_{k=1}^{K} \sum_{i=1}^{n} \left(\boldsymbol{z}_{k,i}^{l} - \bar{\boldsymbol{z}}_{k}^{l} \right) \left(\boldsymbol{z}_{k,i} - \bar{\boldsymbol{z}}_{k}^{l} \right)^{\top},$$
$$\boldsymbol{\Sigma}_{B}^{l} = \frac{1}{K} \sum_{k=1}^{K} \left(\bar{\boldsymbol{z}}_{k}^{l} - \bar{\boldsymbol{z}}_{G}^{l} \right) \left(\bar{\boldsymbol{z}}_{k}^{l} - \bar{\boldsymbol{z}}_{G}^{l} \right)^{\top},$$

where

Qing Qu (EECS, University of Michigan)

Measure of Feature Compression and Separation

• Measure of feature compression: (He & Su. 2022, Tirer et al. (2022))

$$D_l := \operatorname{trace}(\mathbf{\Sigma}_W^l)/\operatorname{trace}(\mathbf{\Sigma}_B^l),$$

$$\boldsymbol{\Sigma}_{W}^{l} = \frac{1}{nK} \sum_{k=1}^{K} \sum_{i=1}^{n} \left(\boldsymbol{z}_{k,i}^{l} - \bar{\boldsymbol{z}}_{k}^{l} \right) \left(\boldsymbol{z}_{k,i} - \bar{\boldsymbol{z}}_{k}^{l} \right)^{\top},$$

Measure of Feature Compression and Separation

• Measure of feature compression: (He & Su. 2022, Tirer et al. (2022))

$$D_l \ := \ {\sf trace}({oldsymbol \Sigma}^l_W)/{\sf trace}({oldsymbol \Sigma}^l_B),$$

$$\boldsymbol{\Sigma}_{W}^{l} = \frac{1}{nK} \sum_{k=1}^{K} \sum_{i=1}^{n} \left(\boldsymbol{z}_{k,i}^{l} - \bar{\boldsymbol{z}}_{k}^{l} \right) \left(\boldsymbol{z}_{k,i} - \bar{\boldsymbol{z}}_{k}^{l} \right)^{\top},$$

• Measure of between-class feature separation:

$$S_l := 1 - \max_{k
eq k'} rac{|\langle oldsymbol{\mu}_k^l, oldsymbol{\mu}_{k'}^l
angle|}{\|oldsymbol{\mu}_k^l\| \|oldsymbol{\mu}_{k'}^l\|} \,,$$

where

$$oldsymbol{\mu}_k^l = oldsymbol{ar{z}}_k^l - oldsymbol{ar{z}}_G^l$$

Networks

Progressive Feature Compression with Linear Rate

Figure: Linear decay of feature compression in trained deep networks. Linear networks (top) vs. nonlinear networks (bottom)

Progressive Feature Separation with Sub-Linear Rate

Figure: Feature separation in trained deep networks. Linear network (left) vs. nonlinear (right)

Networks

Assumptions

• Assumption on the input data ${oldsymbol X} \in R^{d imes N} \ (d \ge N)$:

$$\left| \| \boldsymbol{x}_i \|^2 - 1 \right| \le \frac{\theta}{N}, \ |\langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle| \le \frac{\theta}{N}, \ \forall 1 \le i \ne j \le N,$$

э

イロン イヨン イヨン

Assumptions

• Assumption on the input data ${oldsymbol X} \in R^{d imes N}$ $(d \ge N)$:

$$\left| \| \boldsymbol{x}_i \|^2 - 1 \right| \le \frac{\theta}{N}, \ |\langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle| \le \frac{\theta}{N}, \ \forall 1 \le i \ne j \le N,$$

- Assumption on the trained weights Θ:
 - 1. Minimum norm solution with zero training loss $Y = W_{L:1}X$:

$$\boldsymbol{W}_{L:1} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}.$$

- 2. Weight balancedness: There exists a numerical constant $\delta > 0$ s.t. $W_{l+1}^{\top}W_{l+1} = W_l W_l^{\top}, \forall l \in [L-2], \|W_L^{\top}W_L - W_{L-1}W_{L-1}^{\top}\|_F \leq \delta.$
- 3. Approximate low-rankness: There exist positive constants $\varepsilon \in (0,1)$ and $\rho \in [0, \varepsilon)$,

$$\varepsilon - \rho \le \sigma_i(\mathbf{W}_l) \le \varepsilon, \ i = K + 1, \dots, d - K$$

for all $l = 1, \dots, L-1$, where $\sigma_i(W_l)$ is the *i*-th largest singular value.
Networks

Singular Values

Right Singular Vectors

Qing Qu (EECS, University of Michigan)

2

Progressive Feature Compression with Linear Rate

Theorem (Wang et al.'23)

Suppose our training data (X, Y) and the trained weights Θ of an L-layer DLN satisfy the above assumptions. Then we have

• Progressive feature compression: For all $l \in [L-2]$, we have

$$\frac{c\varepsilon^2}{\kappa(4n)^{1/L}} \le \frac{D_{l+1}}{D_l} \le \frac{\kappa\varepsilon^2}{c(n/2)^{1/L}},$$

Progressive feature separation:

$$S_l \ge 1 - \frac{32(\theta + 4\delta)}{L}(L - l - 1) + o(1)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Effects of Initialization Scale ε

As predicted by our theory, the decay ratio critically depends on the scale of initialization ε :

Figure: Linear decay of feature compression D_l in trained deep networks with varying initialization scale ε .

Tradeoffs Between Decay Rate and Convergence

However, there is trade-off between decay rate ε and training speed of GD:

Figure: The dynamics of GD for DLNs with learning rate $\eta = 0.1$.

Networks

Effects of Initialization Type

Figure: Linear decay of feature compression in trained DLNs with different initialization types (left to right: Orth., Norm, Unif).

< 47 ▶

Outline

1 Law of Parsimony in Gradient Dynamics

2 Efficient Low-rank Training & Network Compression

3 Understanding Hierarchical Representations in Deep Neural Networks

Conclusion

The GD learning process takes place only within a **minimal invariant subspace** of each weight matrix, while the remaining singular subspaces stay **unaffected** throughout training.

- Efficient low-rank training and network compression.
- Understanding hierarchal representations in deep networks.

(日) (國) (필) (필) (필) 표

References

- 1 Yaras, C.*, Wang, P.*, Hu, W., Zhu, Z., Balzano, L., Qu, Q. (2023). The Law of Parsimony in Gradient Descent for Learning Deep Linear Networks. arXiv preprint arXiv:2306.01154.
- 2 Wang, P., Yaras, C., Li, X., Hu, W., Zhu, Z., Balzano, L., Qu, Q. (2023). Unveiling Hierarchical Representations in Deep Networks via Feature Compression and Discrimination. Working paper.
- 3 Li, X., Liu S., Zhou, J., Lu, X., Fernandez-Granda, C., Zhu, Z., Qu, Q. (2023) Principled and Efficient Transfer Learning of Deep Models via Neural Collapse, arXiv preprint arXiv:2212.12206.
- 4 Kwon S., Zhang Z., Song D., Qu Q., Fast and Compressed Deep Linear Networks for Learning Low-Dimensional Models, Working paper.
- 5 Zhu, Z., Ding, T., Zhou, J., Li, X., You, C., Sulam, J., Qu, Q. (2021). A geometric analysis of neural collapse with unconstrained features. Advances in Neural Information Processing Systems, 34, 29820-29834.

イロト 不得下 イヨト イヨト 二日

Acknowledgement

Wei Hu

Laura Balzano

Peng Wang

Can Yaras

Xiao Li

Soo-Min Kwon

Zhihui Zhu

Dogyoon Song

September 7, 2023 50 / 53

イロト イヨト イヨト イヨト

Conclusion

The GD learning process takes place only within a **minimal invariant subspace** of each weight matrix, while the remaining singular subspaces stay **unaffected** throughout training.

- Efficient low-rank training and network compression.
- Understanding hierarchal representations in deep networks.

Thank You! Questions?

Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow network of the same width $2\hat{r}$ would perform just as efficiently as the compressed network with a true width of $d \gg \hat{r}$?

Figure: Efficiency of compressed networks vs. narrow network.

Compressed Networks vs. Narrow Networks?

Figure: Efficiency of compressed networks vs. narrow network.

Answer: No! Over-parameterized networks are "easier" to train.