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Multi-Class Image Classification Problem

• Goal: Learn a deep network predictor from a labelled training dataset
{(x(i),y(i)); i = 1, · · · , n}.

1If not, we can use data augmentation to make them balanced
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• Goal: Learn a deep network predictor from a labelled training dataset
{(x(i),y(i)); i = 1, · · · , n}.

• Training Labels: k = 1, . . . ,K
• K = 10 classes (MNIST, CIFAR10, etc)
• K = 1000 classes (ImageNet)

• For simplicity, we assume balanced dataset where each class has n
training samples.1

1If not, we can use data augmentation to make them balanced
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Deep Neural Network Classifiers

• A vanilla multi-layer perception (MLP) network:

fΘ(x) = WL󰁿󰁾󰁽󰂀
linear classifer W

σ (WL−1 · · ·σ(W1x+ b1) + bL−1)󰁿 󰁾󰁽 󰂀
feature φθ(x)=:h

+bL

• Features of each layer:

zl = σ (Wl−1 · · ·σ(W1x+ b1) + bl−1) , l = 1, · · · , L− 1
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fΘ(x) = WL󰁿󰁾󰁽󰂀
linear classifer W

σ (WL−1 · · ·σ(W1x+ b1) + bL−1)󰁿 󰁾󰁽 󰂀
feature φθ(x)=:h

+bL

• Features of each layer:

zl = σ (Wl−1 · · ·σ(W1x+ b1) + bl−1) , l = 1, · · · , L− 1

• Progressive linear separation through nonlinear layers:
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Feature Compression & Separation in Deep Networks

Training a 10-layer nonlinear MLP network on CIFAR-10

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD September 7, 2023 4 / 53



Feature Compression & Separation in Deep Networks

Training a 10-layer nonlinear MLP network on CIFAR-10

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD September 7, 2023 4 / 53



Feature Compression & Separation in Deep Networks

Training a 10-layer nonlinear MLP network on CIFAR-10

Progressive feature “compression” and “linear separation” from shal-
low to deep layers.
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Feature Compression & Separation in Deep Networks

Training a 10-layer multi-layer perception (MLP) nonlinear network for
classification problems (CIFAR-10)

Progressive feature “compression” and “linear separation” from shal-
low to deep layers.
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Implication I: Invariant Subspaces of in Deeper Layers

We track the learning dynamics of singular values in the penultimate layer
a wide range of models (linear model, MLP, toy ViT, ViT-base):

In the deeper layers, feature learning only happens in a low-
dimensional invariant subspace of the weight matrices.
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Implication II: Linear Separability in Deeper Layers

Training a hybrid (4-layer MLP + 6-layer linear) network on CIFAR-10

Progressive “compression” and “linear separation” from shallow to
deep layers.
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Study of Deep Linear Networks?

Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

has been often used as prototypes for studying nonlinear counterparts:
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Study of Deep Linear Networks?

Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

has been often used as prototypes for studying nonlinear counterparts:

• It possess similar linear separability in deeper layers as nonlinear
networks;

• The features possess similar compression and separation across
layers;

• The weights possess similar low-rank structures throughout
training.
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Study of Deep Linear Networks?

Study of the training DLNs

min
Θ

ℓ(Θ) =
1

2

N󰁛

i=1

󰀂fΘ(xi)− yi󰀂2F =
1

2
󰀂WL:1X − Y 󰀂2F .

could be highly nontrivial:
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Study of Deep Linear Networks?

Study of the training DLNs

min
Θ

ℓ(Θ) =
1

2

N󰁛

i=1

󰀂fΘ(xi)− yi󰀂2F =
1

2
󰀂WL:1X − Y 󰀂2F .

could be highly nontrivial:

• The loss landscape is highly nonconvex, with many saddle points;

• It is overparameterized, with infinitely many local solutions;

• The gradient descent learning dynamics could be highly nonlinear.
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Main Results

Throughout training of deep linear networks, the gradient descent
(GD) dynamics possesses certain parsimonious structures.
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Main Results
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Main Results

The parsimonious structures in GD dynamics leads to

• Efficient low-rank training and network compression

• Better understandings of hierarchical representations
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Outline

1 Law of Parsimony in Gradient Dynamics

2 Efficient Low-rank Training & Network Compression

3 Understanding Hierarchical Representations in Deep Neural Networks

4 Conclusion



Law of Parsimony in Gradient Dynamics

Deep Linear Networks

• Training data {(xi,yi)}Ni=1 ⊂ Rdx × Rdy with

X = [x1 x2 . . . xN ] ∈ Rdx×N , Y = [y1 y2 . . . yN ] ∈ Rdy×N

• Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

where Wl ∈ Rdl×dl−1 and Θ = {Wl}Ll=1.

• Loss function:

min
Θ

ℓ(Θ) =
1

2

N󰁛

i=1

󰀂fΘ(xi)− yi󰀂2F =
1

2
󰀂WL:1X − Y 󰀂2F .
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

• Orthogonal initialization. We use ε-scale orthogonal matrices for
some ε > 0, with

W⊤
l (0)Wl(0) = ε2I or Wl(0)W

⊤
l (0) = ε2I, ∀l ∈ [L],

depending on the size of Wl.
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• Orthogonal initialization. We use ε-scale orthogonal matrices for
some ε > 0, with

W⊤
l (0)Wl(0) = ε2I or Wl(0)W

⊤
l (0) = ε2I, ∀l ∈ [L],

depending on the size of Wl.

• Learning dynamics of GD. We update all weights via GD for
t = 1, 2, . . . as

Wl(t) = (1− ηλ)Wl(t− 1)− η∇Wl
ℓ(Θ(t− 1)), ∀ l ∈ [L],

where η > 0 is the learning rate and λ ≥ 0 controls weight decay.
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

• The weight matrices are square except the last layer, i.e.,
dx = d1 = d2 = · · · = dL−1 = d for some d ∈ N+.

• The input data is whitened in the sense that XX⊤ = Idx .
2

• The cross correlation matrix Y X⊤ has certain low-dimensional
structures (e.g., low-rank or wide matrix).

2For any full rank X ∈ Rdx×N with N ≥ dx, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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We study the GD iterates for training DLNs under the following
assumptions:

• The weight matrices are square except the last layer, i.e.,
dx = d1 = d2 = · · · = dL−1 = d for some d ∈ N+.

• The input data is whitened in the sense that XX⊤ = Idx .
2

• The cross correlation matrix Y X⊤ has certain low-dimensional
structures (e.g., low-rank or wide matrix).

Throughout training of deep networks, the gradient descent leads to
certain parsimonious structures in the weight matrices.

2For any full rank X ∈ Rdx×N with N ≥ dx, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs
We train a L = 3 layer DLN with dx = dy = 30 and r := rank(Y ) = 3.

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.
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Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
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• Left: the evolution of singular values σ1i(t) throughout training t ≥ 0;

• Middle: the evolution of ∠(v1i(t),v1i(0)) throughout training t ≥ 0;
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs
We train a L = 3 layer DLN with dx = dy = 30 and r := rank(Y ) = 3.

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

• Left: the evolution of singular values σ1i(t) throughout training t ≥ 0;

• Middle: the evolution of ∠(v1i(t),v1i(0)) throughout training t ≥ 0;

• Right: the evolution of ∠(u1i(t),u1i(0)) throughout training t ≥ 0.
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Law of Parsimony in Gradient Dynamics
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD September 7, 2023 20 / 53



Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

Theorem (Yaras et al.’23)

Suppose we train an L-layer DLN fΘ(·) on (X,Y ) via GD, the iterates
{Wl(t)}Ll=1 for all t ≥ 0 satisfy the following:

• Case 1: Suppose Y X⊤ ∈ Rdy×dx is of rank r ∈ N+ with dy = dx,
and m = dx − 2r > 0. Then ∃ {Ul}Ll=1 ⊆ Od and {Vl}Ll=1 ⊆ Od

satisfying Vl+1 = Ul for all l ∈ [L− 1], such that Wl(t) admits the
following decomposition

Wl(t) = Ul

󰀗󰁩Wl(t) 0
0 ρ(t)Im

󰀘
V ⊤
l , ∀l ∈ [L− 1], t ≥ 0,

where 󰁩Wl(t) ∈ R2r×2r for all l ∈ [L− 1] with 󰁩Wl(0) = εI2r.
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Theorem (Yaras et al.’23)

Suppose we train an L-layer DLN fΘ(·) on (X,Y ) via GD, the iterates
{Wl(t)}Ll=1 for all t ≥ 0 satisfy the following:

• Case 1: Suppose Y X⊤ ∈ Rdy×dx is of rank r ∈ N+ with dy = dx,
and m = dx − 2r > 0. Then ∃ {Ul}Ll=1 ⊆ Od and {Vl}Ll=1 ⊆ Od

satisfying Vl+1 = Ul for all l ∈ [L− 1], such that Wl(t) admits the
following decomposition

Wl(t) = Ul

󰀗󰁩Wl(t) 0
0 ρ(t)Im

󰀘
V ⊤
l , ∀l ∈ [L− 1], t ≥ 0,

where 󰁩Wl(t) ∈ R2r×2r for all l ∈ [L− 1] with 󰁩Wl(0) = εI2r.

• Case 2: Suppose Y X⊤ ∈ Rdy×dx with dy = r and
m := dx − 2dy > 0. Similar results hold with different ρ(t).
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Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

• Dynamics of singular values and vectors of weight matrices.
Let 󰁩Wl(t) = 󰁨Ul(t)󰁨Σl(t) 󰁨V ⊤

l (t), we can rewrite our decomposition as

Wl(t) =
󰁫
Ul,1

󰁨Ul(t) Ul,2

󰁬 󰀗󰁨Σl(t) 0
0 ρ(t)Im

󰀘 󰁫
Vl,1

󰁨Vl(t) Vl,2

󰁬⊤
,

3M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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• Invariance of subspaces in the weights. Both Ul,2 and Vl,2 of size
d− 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 2r!

3M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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• Dynamics of singular values and vectors of weight matrices.
Let 󰁩Wl(t) = 󰁨Ul(t)󰁨Σl(t) 󰁨V ⊤

l (t), we can rewrite our decomposition as

Wl(t) =
󰁫
Ul,1

󰁨Ul(t) Ul,2

󰁬 󰀗󰁨Σl(t) 0
0 ρ(t)Im

󰀘 󰁫
Vl,1

󰁨Vl(t) Vl,2

󰁬⊤
,

• Invariance of subspaces in the weights. Both Ul,2 and Vl,2 of size
d− 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 2r!

• Implicit low-rank bias.3 As limε→0 ρ(t) = 0 for all t ≥ 0, all the
weights Wl(t) and the end-to-end matrix WL:1(t) are inherently
low-rank (e.g., at most rank 2r).

3M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.

Figure: Evolution of SVD of weight matrices with momentum.
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Efficient Low-rank Training & Network Compression

Main Message

Figure: Efficient training of deep linear networks.

The law of parsimony in GD leads to efficient network compression.
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Efficient Low-rank Training & Network Compression

Deep Matrix Completion

Consider recovering Φ ∈ Rd×d with r := rank(Φ) ≪ d with minimum
number of observation encoded by Ω ∈ {0, 1}d×d:

min
Θ

ℓmc(Θ) :=
1

2
󰀂Ω⊙ (WL:1 −Φ)󰀂2F .
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Efficient Low-rank Training & Network Compression

Deep Matrix Completion

Consider recovering Φ ∈ Rd×d with r := rank(Φ) ≪ d with minimum
number of observation encoded by Ω ∈ {0, 1}d×d:

min
Θ

ℓmc(Θ) :=
1

2
󰀂Ω⊙ (WL:1 −Φ)󰀂2F .

• If full observation Ω = 1d1
⊤
d available, the problem simplifies to deep

matrix factorization.

• If the network depth L = 2, it reduces to the Burer-Monteiro
factorization formulation.
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Efficient Low-rank Training & Network Compression

Why Deep Matrix Factorization and Overparameterization?

• Benefits of Depth (Left): Improved sample complexity4 and less
prone to overfitting.

• Benefits of Width (Right): Increasing the width of the network
results in accelerated convergence in terms of iterations.

4Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32.
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Efficient Low-rank Training & Network Compression

Overparameterization: A Double Edged Sword

Figure: Efficient training of deep linear networks.

Cons: Increasing the depth and width of the network leads to much
more parameters. Could be expensive to optimize!
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

min
Θ

1

2
󰀂WL:1 −Φ󰀂2F ,

with Ω = 1d1
⊤
d . We optimize the problem via GD from ε-scale

orthogonal initialization.
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

min
Θ

1

2
󰀂WL:1 −Φ󰀂2F ,

with Ω = 1d1
⊤
d . We optimize the problem via GD from ε-scale

orthogonal initialization.

• Law of parsimony in GD for the end-to-end matrix WL:1:

WL:1(t) =
󰀅
UL,1 UL,2

󰀆 󰀗󰁩WL:1(t) 0
0 ρL(t)Im

󰀘 󰀗
V ⊤
1,1

V ⊤
1,2

󰀘

= UL,1
󰁩WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2,

where we overestimate the rank 󰁥r > r and let m = d− 2󰁥r.
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1
󰁩WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1
󰁩WL:1(t)V

⊤
1,1, ∀t ≥ 0,
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1
󰁩WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1
󰁩WL:1(t)V

⊤
1,1, ∀t ≥ 0,

Claim: With small initialization, running GD on the original weights
{Wl}Ll=1 ⊆ Rd×d is almost equivalent to running GD on the com-

pressed weights {󰁩Wl}Ll=1 ⊆ R2󰁥r×2󰁥r.
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Efficient Low-rank Training & Network Compression

The Simple Case: Deep Matrix Factorization

Figure: Efficient training of deep linear networks.

Comparison on the number of parameters: original network Ld2

vs. compressed network L󰁥r2.
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Efficient Low-rank Training & Network Compression

From Deep Matrix Factorization to Completion?

• However, directly applying our approach from deep matrix
factorization to completion does not work well...
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Efficient Low-rank Training & Network Compression

From Deep Matrix Factorization to Completion?

• However, directly applying our approach from deep matrix
factorization to completion does not work well...

• This is due to the fact that the law of parsimony in GD:

WL:1(t) ≈ UL,1
󰁩WL:1(t)V

⊤
1,1, ∀t ≥ 0,

does NOT hold, because Ω⊙Φ is not low-rank for arbitrary Ω.
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1
󰁩WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1
󰁩WL:1(t)V

⊤
1,1, ∀t ≥ 0,
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How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1
󰁩WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1
󰁩WL:1(t)V

⊤
1,1, ∀t ≥ 0,

Claim: With small initialization, running GD on the original weights
{Wl}Ll=1 ⊆ Rd×d is almost equivalent to running GD on the com-

pressed weights {󰁩Wl}Ll=1 ⊆ R2󰁥r×2󰁥r.
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Efficient Low-rank Training & Network Compression

From Deep Matrix Factorization to Completion?

• Remedy: update both V1,1(t) and UL,1(t) factors via GD with a
discrepant learning rate γη in the “compressed network”:5

W (γ)
comp(t) := UL,1(t)󰁩WL:1(t)V

⊤
1,1(t).

5This is done simultaneously with the GD updates on the subnetwork 󰁩WL:1(t), which
uses the original learning rate η.
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• Remedy: update both V1,1(t) and UL,1(t) factors via GD with a
discrepant learning rate γη in the “compressed network”:5

W (γ)
comp(t) := UL,1(t)󰁩WL:1(t)V

⊤
1,1(t).

• Complexity: original network O(Ld2) vs compressed network O(Ld).

5This is done simultaneously with the GD updates on the subnetwork 󰁩WL:1(t), which
uses the original learning rate η.
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Efficient Low-rank Training & Network Compression

Low-Rank Training of Nonlinear Networks?

Factorize the weights of deeper layers in nonlinear networks into low-rank
counterparts throughout training:

Wnew = BA

where B ∈ Rd×r,A ∈ Rr×d are trainable parameters.

• The rank r of factorization should correspond to class number K, and
relaxed in shallower layers.

• This can reduce the memory and latency during training, without
harming the performance.

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD September 7, 2023 34 / 53



Efficient Low-rank Training & Network Compression

Low-Rank Training of Nonlinear Networks?

Comparison between normal training and low rank training on MNIST,
FashionMNIST, USPS using a MLP with 3 hidden layers.
We factorized the weights of the last two hidden layers, and reduced the
memory and latency with comparable accuracy.

Method # Params Memory FLOPs Avg Acc.

Normal training 5.59M 0.376 GiB 1.65 TFLOPs 95.09
Low rank(r=10) 1.67M 0.113 GiB 1.17 TFLOPs 94.57
Low rank(r=1) 1.59M 0.108 GiB 1.17 TFLOPs 90.86
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Efficient Low-rank Training & Network Compression

Low-rank Adaptation (LoRA) of Large Models?

LoRA is an SoTA parameter-efficient adaptation technique for
transformers:

Wnew = W0 +BA (1)

where B ∈ Rd×r,A ∈ Rr×d are trainable parameters.

Method # Params CIFAR10 CIFAR100

Full-model 86.7M/86.7M 99.07 93.27
LoRA 0.33M/86.9M 98.97 92.85

AdaLoRA 0.33M/86.9M 98.87 92.93
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Understanding Hierarchical Representations in Deep Neural
Networks

Main Message

For classification problem, the law of parsimony in GD explains pro-
gressive feature separation in deep linear networks.
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Understanding Hierarchical Representations in Deep Neural
Networks

Problem Setup: Train DLNs for Classification Problems
• Balanced Training Data: {(xk,i,yk)}i∈[n],k∈[K] for K-class

classification: xk,i ∈ Rd is the i-th sample in the k-th class, yk ∈ RK

is an one-hot label.
• Feature in the l-th Layer of DLN:

zl
k,i := Wl . . .W1xk,i = Wl:1xk,i, ∀l ∈ [L],

• With-class and between-class covariance matrices

Σl
W =

1

nK

K󰁛

k=1

n󰁛

i=1

󰀓
zl
k,i − zl

k

󰀔󰀓
zk,i − zl

k

󰀔⊤
,

Σl
B =

1

K

K󰁛

k=1

󰀓
zl
k − z̄l

G

󰀔󰀓
zl
k − z̄l

G

󰀔⊤
,

where

z̄l
k =

1

nk

nk󰁛

i=1

zl
k,i, z̄l

G =
1

K

K󰁛

k=1

z̄l
k
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Understanding Hierarchical Representations in Deep Neural
Networks

Measure of Feature Compression and Separation

• Measure of feature compression: (He & Su. 2022, Tirer et al. (2022))

Dl := trace(Σl
W )/trace(Σl

B),

Σl
W =

1

nK

K󰁛

k=1

n󰁛

i=1

󰀓
zl
k,i − zl

k

󰀔󰀓
zk,i − zl

k

󰀔⊤
,
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Understanding Hierarchical Representations in Deep Neural
Networks

Measure of Feature Compression and Separation

• Measure of feature compression: (He & Su. 2022, Tirer et al. (2022))

Dl := trace(Σl
W )/trace(Σl

B),

Σl
W =

1

nK

K󰁛

k=1

n󰁛

i=1

󰀓
zl
k,i − zl

k

󰀔󰀓
zk,i − zl

k

󰀔⊤
,

• Measure of between-class feature separation:

Sl := 1−max
k ∕=k′

|〈µl
k,µ

l
k′〉|

󰀂µl
k󰀂󰀂µl

k′󰀂
,

where

µl
k = z̄l

k − z̄l
G
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Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Compression with Linear Rate

Figure: Linear decay of feature compression in trained deep networks.
Linear networks (top) vs. nonlinear networks (bottom)

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD September 7, 2023 40 / 53



Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Separation with Sub-Linear Rate

Figure: Feature separation in trained deep networks. Linear network (left) vs.
nonlinear (right)
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Understanding Hierarchical Representations in Deep Neural
Networks

Assumptions

• Assumption on the input data X ∈ Rd×N (d ≥ N) :

󰀏󰀏󰀂xi󰀂2 − 1
󰀏󰀏 ≤ θ

N
, |〈xi,xj〉| ≤

θ

N
, ∀1 ≤ i ∕= j ≤ N,
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Understanding Hierarchical Representations in Deep Neural
Networks

Assumptions

• Assumption on the input data X ∈ Rd×N (d ≥ N) :

󰀏󰀏󰀂xi󰀂2 − 1
󰀏󰀏 ≤ θ

N
, |〈xi,xj〉| ≤

θ

N
, ∀1 ≤ i ∕= j ≤ N,

• Assumption on the trained weights Θ:
1. Minimum norm solution with zero training loss Y = WL:1X:

WL:1 = (X⊤X)−1X⊤.

2. Weight balancedness: There exists a numerical constant δ > 0 s.t.

W⊤
l+1Wl+1 = WlW

⊤
l , ∀l ∈ [L− 2], 󰀂W⊤

L WL −WL−1W
⊤
L−1󰀂F ≤ δ.

3. Approximate low-rankness: There exist positive constants ε ∈ (0, 1)
and ρ ∈ [0, ε),

ε− ρ ≤ σi(Wl) ≤ ε, i = K + 1, . . . , d−K

for all l = 1, · · · , L− 1, where σi(Wl) is the i-th largest singular value.
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Understanding Hierarchical Representations in Deep Neural
Networks
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Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Compression with Linear Rate

Theorem (Wang et al.’23)

Suppose our training data (X,Y ) and the trained weights Θ of an L-layer
DLN satisfy the above assumptions. Then we have

• Progressive feature compression: For all l ∈ [L− 2], we have

cε2

κ(4n)1/L
≤ Dl+1

Dl
≤ κε2

c(n/2)1/L
,

• Progressive feature separation:

Sl ≥ 1− 32 (θ + 4δ)

L
(L− l − 1) + o(1)
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Understanding Hierarchical Representations in Deep Neural
Networks

Effects of Initialization Scale ε

As predicted by our theory, the decay ratio critically depends on the scale
of initialization ε:

Figure: Linear decay of feature compression Dl in trained deep networks
with varying initialization scale ε.
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Understanding Hierarchical Representations in Deep Neural
Networks

Tradeoffs Between Decay Rate and Convergence

However, there is trade-off between decay rate ε and training speed of GD:

Figure: The dynamics of GD for DLNs with learning rate η = 0.1.
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Understanding Hierarchical Representations in Deep Neural
Networks

Effects of Initialization Type

Figure: Linear decay of feature compression in trained DLNs with different
initialization types (left to right: Orth., Norm, Unif).
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Conclusion

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.

• Efficient low-rank training and network compression.

• Understanding hierarchal representations in deep networks.
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Conclusion

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.

• Efficient low-rank training and network compression.

• Understanding hierarchal representations in deep networks.

Thank You! Questions?



Conclusion

Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow
network of the same width 2󰁥r would perform just as efficiently as the
compressed network with a true width of d ≫ 󰁥r?

Figure: Efficiency of compressed networks vs. narrow network.
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Conclusion

Compressed Networks vs. Narrow Networks?

Figure: Efficiency of compressed networks vs. narrow network.

Answer: No! Over-parameterized networks are “easier” to train.
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