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Multi-Class Image Classification Problem

• Goal: Learn a deep network predictor from a labelled training dataset
{(x(i),y(i)); i = 1, · · · , n}.

1If not, we can use data augmentation to make them balanced
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• Goal: Learn a deep network predictor from a labelled training dataset
{(x(i),y(i)); i = 1, · · · , n}.

• Training Labels: k = 1, . . . ,K
• K = 10 classes (MNIST, CIFAR10, etc)
• K = 1000 classes (ImageNet)

• For simplicity, we assume balanced dataset where each class has n
training samples.1

1If not, we can use data augmentation to make them balanced
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Deep Neural Network Classifiers

• A vanilla multi-layer perception (MLP) network:

fΘ(x) = WL
linear classifer W

σ (WL−1 · · ·σ(W1x+ b1) + bL−1)  
feature φθ(x)=:h

+bL

• Features of each layer:

zl = σ (Wl−1 · · ·σ(W1x+ b1) + bl−1) , l = 1, · · · , L− 1
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σ (WL−1 · · ·σ(W1x+ b1) + bL−1)  
feature φθ(x)=:h

+bL

• Features of each layer:

zl = σ (Wl−1 · · ·σ(W1x+ b1) + bl−1) , l = 1, · · · , L− 1

• Progressive linear separation through nonlinear layers:
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Feature Compression & Separation in Deep Networks

Training a 10-layer nonlinear MLP network on CIFAR-10
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Feature Compression & Separation in Deep Networks

Training a 10-layer multi-layer perception (MLP) nonlinear network for
classification problems (CIFAR-10)

Progressive feature “compression” and “linear separation” from shal-
low to deep layers.
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Implication I: Invariant Subspaces of in Deeper Layers

We track the learning dynamics of singular values in the penultimate layer
a wide range of models (linear model, MLP, toy ViT, ViT-base):

In the deeper layers, feature learning only happens in a low-
dimensional invariant subspace of the weight matrices.
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Implication II: Linear Separability in Deeper Layers

Training a hybrid (4-layer MLP + 6-layer linear) network on CIFAR-10

Progressive “compression” and “linear separation” from shallow to
deep layers.
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Study of Deep Linear Networks?

Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

has been often used as prototypes for studying nonlinear counterparts:
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Study of Deep Linear Networks?

Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

has been often used as prototypes for studying nonlinear counterparts:

• It possess similar linear separability in deeper layers as nonlinear
networks;

• The features possess similar compression and separation across
layers;

• The weights possess similar low-rank structures throughout
training.

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD September 7, 2023 10 / 53



Study of Deep Linear Networks?

Study of the training DLNs

min
Θ

ℓ(Θ) =
1

2

N

i=1

fΘ(xi)− yi2F =
1

2
WL:1X − Y 2F .

could be highly nontrivial:
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Study of Deep Linear Networks?

Study of the training DLNs

min
Θ

ℓ(Θ) =
1

2

N

i=1

fΘ(xi)− yi2F =
1

2
WL:1X − Y 2F .

could be highly nontrivial:

• The loss landscape is highly nonconvex, with many saddle points;

• It is overparameterized, with infinitely many local solutions;

• The gradient descent learning dynamics could be highly nonlinear.
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Main Results

Throughout training of deep linear networks, the gradient descent
(GD) dynamics possesses certain parsimonious structures.
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Main Results
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Main Results

The parsimonious structures in GD dynamics leads to

• Efficient low-rank training and network compression

• Better understandings of hierarchical representations
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Outline

1 Law of Parsimony in Gradient Dynamics

2 Efficient Low-rank Training & Network Compression

3 Understanding Hierarchical Representations in Deep Neural Networks

4 Conclusion



Law of Parsimony in Gradient Dynamics

Deep Linear Networks

• Training data {(xi,yi)}Ni=1 ⊂ Rdx × Rdy with

X = [x1 x2 . . . xN ] ∈ Rdx×N , Y = [y1 y2 . . . yN ] ∈ Rdy×N

• Deep linear network (DLN):

fΘ(x) := WL · · ·W1x = WL:1x,

where Wl ∈ Rdl×dl−1 and Θ = {Wl}Ll=1.

• Loss function:

min
Θ

ℓ(Θ) =
1

2

N

i=1

fΘ(xi)− yi2F =
1

2
WL:1X − Y 2F .
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

• Orthogonal initialization. We use ε-scale orthogonal matrices for
some ε > 0, with

W⊤
l (0)Wl(0) = ε2I or Wl(0)W

⊤
l (0) = ε2I, ∀l ∈ [L],

depending on the size of Wl.
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• Orthogonal initialization. We use ε-scale orthogonal matrices for
some ε > 0, with

W⊤
l (0)Wl(0) = ε2I or Wl(0)W

⊤
l (0) = ε2I, ∀l ∈ [L],

depending on the size of Wl.

• Learning dynamics of GD. We update all weights via GD for
t = 1, 2, . . . as

Wl(t) = (1− ηλ)Wl(t− 1)− η∇Wl
ℓ(Θ(t− 1)), ∀ l ∈ [L],

where η > 0 is the learning rate and λ ≥ 0 controls weight decay.
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Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

• The weight matrices are square except the last layer, i.e.,
dx = d1 = d2 = · · · = dL−1 = d for some d ∈ N+.

• The input data is whitened in the sense that XX⊤ = Idx .
2

• The cross correlation matrix Y X⊤ has certain low-dimensional
structures (e.g., low-rank or wide matrix).

2For any full rank X ∈ Rdx×N with N ≥ dx, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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We study the GD iterates for training DLNs under the following
assumptions:

• The weight matrices are square except the last layer, i.e.,
dx = d1 = d2 = · · · = dL−1 = d for some d ∈ N+.

• The input data is whitened in the sense that XX⊤ = Idx .
2

• The cross correlation matrix Y X⊤ has certain low-dimensional
structures (e.g., low-rank or wide matrix).

Throughout training of deep networks, the gradient descent leads to
certain parsimonious structures in the weight matrices.

2For any full rank X ∈ Rdx×N with N ≥ dx, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs
We train a L = 3 layer DLN with dx = dy = 30 and r := rank(Y ) = 3.

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.
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• Left: the evolution of singular values σ1i(t) throughout training t ≥ 0;

• Middle: the evolution of ∠(v1i(t),v1i(0)) throughout training t ≥ 0;
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The Evolution of Singular Spaces in GD Iterates for DLNs
We train a L = 3 layer DLN with dx = dy = 30 and r := rank(Y ) = 3.

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

• Left: the evolution of singular values σ1i(t) throughout training t ≥ 0;

• Middle: the evolution of ∠(v1i(t),v1i(0)) throughout training t ≥ 0;

• Right: the evolution of ∠(u1i(t),u1i(0)) throughout training t ≥ 0.
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Law of Parsimony in Gradient Dynamics
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs

Figure: Evolution of SVD of the weight matrix W1(t) = U1(t)Σ1(t)V1(t)
⊤.

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.
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Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

Theorem (Yaras et al.’23)

Suppose we train an L-layer DLN fΘ(·) on (X,Y ) via GD, the iterates
{Wl(t)}Ll=1 for all t ≥ 0 satisfy the following:

• Case 1: Suppose Y X⊤ ∈ Rdy×dx is of rank r ∈ N+ with dy = dx,
and m = dx − 2r > 0. Then ∃ {Ul}Ll=1 ⊆ Od and {Vl}Ll=1 ⊆ Od

satisfying Vl+1 = Ul for all l ∈ [L− 1], such that Wl(t) admits the
following decomposition

Wl(t) = Ul

Wl(t) 0
0 ρ(t)Im


V ⊤
l , ∀l ∈ [L− 1], t ≥ 0,

where Wl(t) ∈ R2r×2r for all l ∈ [L− 1] with Wl(0) = εI2r.
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Theorem (Yaras et al.’23)

Suppose we train an L-layer DLN fΘ(·) on (X,Y ) via GD, the iterates
{Wl(t)}Ll=1 for all t ≥ 0 satisfy the following:

• Case 1: Suppose Y X⊤ ∈ Rdy×dx is of rank r ∈ N+ with dy = dx,
and m = dx − 2r > 0. Then ∃ {Ul}Ll=1 ⊆ Od and {Vl}Ll=1 ⊆ Od

satisfying Vl+1 = Ul for all l ∈ [L− 1], such that Wl(t) admits the
following decomposition

Wl(t) = Ul

Wl(t) 0
0 ρ(t)Im


V ⊤
l , ∀l ∈ [L− 1], t ≥ 0,

where Wl(t) ∈ R2r×2r for all l ∈ [L− 1] with Wl(0) = εI2r.

• Case 2: Suppose Y X⊤ ∈ Rdy×dx with dy = r and
m := dx − 2dy > 0. Similar results hold with different ρ(t).
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Law of Parsimony in Gradient Dynamics

The Law of Parsimony in GD

• Dynamics of singular values and vectors of weight matrices.
Let Wl(t) = Ul(t)Σl(t) V ⊤

l (t), we can rewrite our decomposition as

Wl(t) =

Ul,1

Ul(t) Ul,2

 Σl(t) 0
0 ρ(t)Im

 
Vl,1

Vl(t) Vl,2

⊤
,

3M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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Wl(t) =
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Ul(t) Ul,2

 Σl(t) 0
0 ρ(t)Im

 
Vl,1

Vl(t) Vl,2

⊤
,

• Invariance of subspaces in the weights. Both Ul,2 and Vl,2 of size
d− 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 2r!

3M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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The Law of Parsimony in GD

• Dynamics of singular values and vectors of weight matrices.
Let Wl(t) = Ul(t)Σl(t) V ⊤

l (t), we can rewrite our decomposition as

Wl(t) =

Ul,1

Ul(t) Ul,2

 Σl(t) 0
0 ρ(t)Im

 
Vl,1

Vl(t) Vl,2

⊤
,

• Invariance of subspaces in the weights. Both Ul,2 and Vl,2 of size
d− 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 2r!

• Implicit low-rank bias.3 As limε→0 ρ(t) = 0 for all t ≥ 0, all the
weights Wl(t) and the end-to-end matrix WL:1(t) are inherently
low-rank (e.g., at most rank 2r).

3M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR’23.
https://minyoungg.github.io/overparam/
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in More Generic Settings

Figure: Evolution of SVD of weight matrices without whitened data.

Figure: Evolution of SVD of weight matrices with momentum.
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Efficient Low-rank Training & Network Compression

Main Message

Figure: Efficient training of deep linear networks.

The law of parsimony in GD leads to efficient network compression.
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Efficient Low-rank Training & Network Compression

Deep Matrix Completion

Consider recovering Φ ∈ Rd×d with r := rank(Φ) ≪ d with minimum
number of observation encoded by Ω ∈ {0, 1}d×d:

min
Θ

ℓmc(Θ) :=
1

2
Ω⊙ (WL:1 −Φ)2F .
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Deep Matrix Completion

Consider recovering Φ ∈ Rd×d with r := rank(Φ) ≪ d with minimum
number of observation encoded by Ω ∈ {0, 1}d×d:

min
Θ

ℓmc(Θ) :=
1

2
Ω⊙ (WL:1 −Φ)2F .

• If full observation Ω = 1d1
⊤
d available, the problem simplifies to deep

matrix factorization.

• If the network depth L = 2, it reduces to the Burer-Monteiro
factorization formulation.
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Efficient Low-rank Training & Network Compression

Why Deep Matrix Factorization and Overparameterization?

• Benefits of Depth (Left): Improved sample complexity4 and less
prone to overfitting.

• Benefits of Width (Right): Increasing the width of the network
results in accelerated convergence in terms of iterations.

4Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32.
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Efficient Low-rank Training & Network Compression

Overparameterization: A Double Edged Sword

Figure: Efficient training of deep linear networks.

Cons: Increasing the depth and width of the network leads to much
more parameters. Could be expensive to optimize!
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

min
Θ

1

2
WL:1 −Φ2F ,

with Ω = 1d1
⊤
d . We optimize the problem via GD from ε-scale

orthogonal initialization.
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

min
Θ

1

2
WL:1 −Φ2F ,

with Ω = 1d1
⊤
d . We optimize the problem via GD from ε-scale

orthogonal initialization.

• Law of parsimony in GD for the end-to-end matrix WL:1:

WL:1(t) =

UL,1 UL,2

 WL:1(t) 0
0 ρL(t)Im

 
V ⊤
1,1

V ⊤
1,2



= UL,1
WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2,

where we overestimate the rank r > r and let m = d− 2r.
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Efficient Low-rank Training & Network Compression

How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1
WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1
WL:1(t)V

⊤
1,1, ∀t ≥ 0,
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How to Achieve the Best of Two Worlds?

• The effects of small initialization ε and depth L:

WL:1(t) = UL,1
WL:1(t)V

⊤
1,1 + ρL(t)UL,2V

⊤
1,2

≈ UL,1
WL:1(t)V

⊤
1,1, ∀t ≥ 0,

Claim: With small initialization, running GD on the original weights
{Wl}Ll=1 ⊆ Rd×d is almost equivalent to running GD on the com-

pressed weights {Wl}Ll=1 ⊆ R2r×2r.
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Efficient Low-rank Training & Network Compression

The Simple Case: Deep Matrix Factorization

Figure: Efficient training of deep linear networks.

Comparison on the number of parameters: original network Ld2

vs. compressed network Lr2.
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Efficient Low-rank Training & Network Compression

From Deep Matrix Factorization to Completion?

• However, directly applying our approach from deep matrix
factorization to completion does not work well...
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Efficient Low-rank Training & Network Compression

From Deep Matrix Factorization to Completion?

• However, directly applying our approach from deep matrix
factorization to completion does not work well...

• This is due to the fact that the law of parsimony in GD:

WL:1(t) ≈ UL,1
WL:1(t)V

⊤
1,1, ∀t ≥ 0,

does NOT hold, because Ω⊙Φ is not low-rank for arbitrary Ω.
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Efficient Low-rank Training & Network Compression
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Efficient Low-rank Training & Network Compression

From Deep Matrix Factorization to Completion?

• Remedy: update both V1,1(t) and UL,1(t) factors via GD with a
discrepant learning rate γη in the “compressed network”:5

W (γ)
comp(t) := UL,1(t)WL:1(t)V

⊤
1,1(t).

5This is done simultaneously with the GD updates on the subnetwork WL:1(t), which
uses the original learning rate η.
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From Deep Matrix Factorization to Completion?

• Remedy: update both V1,1(t) and UL,1(t) factors via GD with a
discrepant learning rate γη in the “compressed network”:5

W (γ)
comp(t) := UL,1(t)WL:1(t)V

⊤
1,1(t).

• Complexity: original network O(Ld2) vs compressed network O(Ld).

5This is done simultaneously with the GD updates on the subnetwork WL:1(t), which
uses the original learning rate η.
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Efficient Low-rank Training & Network Compression

Low-Rank Training of Nonlinear Networks?

Factorize the weights of deeper layers in nonlinear networks into low-rank
counterparts throughout training:

Wnew = BA

where B ∈ Rd×r,A ∈ Rr×d are trainable parameters.

• The rank r of factorization should correspond to class number K, and
relaxed in shallower layers.

• This can reduce the memory and latency during training, without
harming the performance.
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Efficient Low-rank Training & Network Compression

Low-Rank Training of Nonlinear Networks?

Comparison between normal training and low rank training on MNIST,
FashionMNIST, USPS using a MLP with 3 hidden layers.
We factorized the weights of the last two hidden layers, and reduced the
memory and latency with comparable accuracy.

Method # Params Memory FLOPs Avg Acc.

Normal training 5.59M 0.376 GiB 1.65 TFLOPs 95.09
Low rank(r=10) 1.67M 0.113 GiB 1.17 TFLOPs 94.57
Low rank(r=1) 1.59M 0.108 GiB 1.17 TFLOPs 90.86
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Efficient Low-rank Training & Network Compression

Low-rank Adaptation (LoRA) of Large Models?

LoRA is an SoTA parameter-efficient adaptation technique for
transformers:

Wnew = W0 +BA (1)

where B ∈ Rd×r,A ∈ Rr×d are trainable parameters.

Method # Params CIFAR10 CIFAR100

Full-model 86.7M/86.7M 99.07 93.27
LoRA 0.33M/86.9M 98.97 92.85

AdaLoRA 0.33M/86.9M 98.87 92.93
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Understanding Hierarchical Representations in Deep Neural
Networks

Main Message

For classification problem, the law of parsimony in GD explains pro-
gressive feature separation in deep linear networks.
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Understanding Hierarchical Representations in Deep Neural
Networks

Problem Setup: Train DLNs for Classification Problems
• Balanced Training Data: {(xk,i,yk)}i∈[n],k∈[K] for K-class

classification: xk,i ∈ Rd is the i-th sample in the k-th class, yk ∈ RK

is an one-hot label.
• Feature in the l-th Layer of DLN:

zl
k,i := Wl . . .W1xk,i = Wl:1xk,i, ∀l ∈ [L],

• With-class and between-class covariance matrices

Σl
W =

1

nK

K

k=1

n

i=1


zl
k,i − zl

k


zk,i − zl

k

⊤
,

Σl
B =

1

K

K

k=1


zl
k − z̄l

G


zl
k − z̄l

G

⊤
,

where

z̄l
k =

1

nk

nk

i=1

zl
k,i, z̄l

G =
1

K

K

k=1

z̄l
k
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Understanding Hierarchical Representations in Deep Neural
Networks

Measure of Feature Compression and Separation

• Measure of feature compression: (He & Su. 2022, Tirer et al. (2022))

Dl := trace(Σl
W )/trace(Σl

B),

Σl
W =

1

nK

K

k=1

n

i=1


zl
k,i − zl

k


zk,i − zl

k

⊤
,
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Measure of Feature Compression and Separation

• Measure of feature compression: (He & Su. 2022, Tirer et al. (2022))

Dl := trace(Σl
W )/trace(Σl

B),

Σl
W =

1

nK

K

k=1

n

i=1


zl
k,i − zl

k


zk,i − zl

k

⊤
,

• Measure of between-class feature separation:

Sl := 1−max
k ∕=k′

|〈µl
k,µ

l
k′〉|

µl
kµl

k′
,

where

µl
k = z̄l

k − z̄l
G
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Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Compression with Linear Rate

Figure: Linear decay of feature compression in trained deep networks.
Linear networks (top) vs. nonlinear networks (bottom)
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Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Separation with Sub-Linear Rate

Figure: Feature separation in trained deep networks. Linear network (left) vs.
nonlinear (right)
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Understanding Hierarchical Representations in Deep Neural
Networks

Assumptions

• Assumption on the input data X ∈ Rd×N (d ≥ N) :

xi2 − 1
 ≤ θ

N
, |〈xi,xj〉| ≤

θ

N
, ∀1 ≤ i ∕= j ≤ N,
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Understanding Hierarchical Representations in Deep Neural
Networks

Assumptions

• Assumption on the input data X ∈ Rd×N (d ≥ N) :

xi2 − 1
 ≤ θ

N
, |〈xi,xj〉| ≤

θ

N
, ∀1 ≤ i ∕= j ≤ N,

• Assumption on the trained weights Θ:
1. Minimum norm solution with zero training loss Y = WL:1X:

WL:1 = (X⊤X)−1X⊤.

2. Weight balancedness: There exists a numerical constant δ > 0 s.t.

W⊤
l+1Wl+1 = WlW

⊤
l , ∀l ∈ [L− 2], W⊤

L WL −WL−1W
⊤
L−1F ≤ δ.

3. Approximate low-rankness: There exist positive constants ε ∈ (0, 1)
and ρ ∈ [0, ε),

ε− ρ ≤ σi(Wl) ≤ ε, i = K + 1, . . . , d−K

for all l = 1, · · · , L− 1, where σi(Wl) is the i-th largest singular value.

Qing Qu (EECS, University of Michigan) Law of Parsimony in GD September 7, 2023 42 / 53



Understanding Hierarchical Representations in Deep Neural
Networks
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Understanding Hierarchical Representations in Deep Neural
Networks

Progressive Feature Compression with Linear Rate

Theorem (Wang et al.’23)

Suppose our training data (X,Y ) and the trained weights Θ of an L-layer
DLN satisfy the above assumptions. Then we have

• Progressive feature compression: For all l ∈ [L− 2], we have

cε2

κ(4n)1/L
≤ Dl+1

Dl
≤ κε2

c(n/2)1/L
,

• Progressive feature separation:

Sl ≥ 1− 32 (θ + 4δ)

L
(L− l − 1) + o(1)
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Understanding Hierarchical Representations in Deep Neural
Networks

Effects of Initialization Scale ε

As predicted by our theory, the decay ratio critically depends on the scale
of initialization ε:

Figure: Linear decay of feature compression Dl in trained deep networks
with varying initialization scale ε.
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Understanding Hierarchical Representations in Deep Neural
Networks

Tradeoffs Between Decay Rate and Convergence

However, there is trade-off between decay rate ε and training speed of GD:

Figure: The dynamics of GD for DLNs with learning rate η = 0.1.
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Understanding Hierarchical Representations in Deep Neural
Networks

Effects of Initialization Type

Figure: Linear decay of feature compression in trained DLNs with different
initialization types (left to right: Orth., Norm, Unif).
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Conclusion

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.

• Efficient low-rank training and network compression.

• Understanding hierarchal representations in deep networks.
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Conclusion

The GD learning process takes place only within a minimal invari-
ant subspace of each weight matrix, while the remaining singular
subspaces stay unaffected throughout training.

• Efficient low-rank training and network compression.

• Understanding hierarchal representations in deep networks.

Thank You! Questions?



Conclusion

Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow
network of the same width 2r would perform just as efficiently as the
compressed network with a true width of d ≫ r?

Figure: Efficiency of compressed networks vs. narrow network.
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Conclusion

Compressed Networks vs. Narrow Networks?

Figure: Efficiency of compressed networks vs. narrow network.

Answer: No! Over-parameterized networks are “easier” to train.
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