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Introduction

Model reproducibility in deep learning

• Definition: You can repeatedly run your algorithm on certain datasets
and obtain the same (or similar) results on a particular project 1.

Quick Survey: Is there any reproducibility in your research area?

• Rare in deep learning:
• Representation Learning: Proved for only linear reproducibility [13].

• Classification problem: has reproducibility for only similar network
architecture [17].

• Generative model: before this work, only for Variational autoencoders
(VAE) with a factorized prior distribution over the latent variables [6].

• Very general in diffusion model

1similar to the definition uniquely identifiable encoding in [6, 7, 13, 20]
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Introduction

Introduction of diffusion model

• A powerfule generative model:
• Stable Diffusion [14]: Large text-to-image diffusion model
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Introduction

Introduction of diffusion model
• A powerfule generative model:

• ControlNet [22]: Diffusion model with high flexiable guidance
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Introduction

Introduction of diffusion model

• Definition: A generative model f : E 7→ I mapping from the
gaussian noise space E to the image manifold I
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Introduction

Introduction of diffusion model

• Training: Only the denoiser funtion ϵθ requires training, following an
easy pipeline:
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Reproducibility for Unconditional Diffusion Models

Samples Visualization

Q1: Starting from the same noise input, how are the generated
data samples from various diffusion models related to each other?

Training on the same dataset, sampling by a deterministic sampler.
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Reproducibility for Unconditional Diffusion Models

Quantitative analysis

• Metric: We define reproducibility (RP) score to measure the this
phenomenon:

RP Score := P (MSSCD(x1,x2) > 0.6) ,

represents the probability of a generated sample pair (x1,x2) from
two different diffusion models to have self-supervised copy detection
(SSCD) similarityMSSCD larger than 0.6. We sampled 10K noise to
estimate the probability. The SSCD similarity is first introduced in
[12] to measure the replication between image pair (x1,x2), which is
defined as the following:

MSSCD(x1,x2) =
SSCD(x1) · SSCD(x2)

||SSCD(x1)||2 · ||SSCD(x2)||2

where SSCD(·) represents a neural descriptor for copy detection.
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Reproducibility for Unconditional Diffusion Models

Quantitative analysis

• Results:

C2: Diffusion models consistently generate nearly identical
contents, irrespective of network architectures, training and

sampling procedures, and perturbation kernels.
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Reproducibility for Unconditional Diffusion Models

Mapping from Noise Hyperplane to Image Manifold

• Results:

Pick three initial noises (ϵ1, ϵ2, ϵ3) to generate clear images (x1, x2, x3) in the

image manifold I. Second, we create a 2D noise hyperplane with

ϵ (α, β) = α · (ϵ2 − ϵ1) + β · (ϵ3 − ϵ1) + ϵ1. And utilize them to generate images

x(α, β), and RP Score := maxk∈{1,2,3}[MSSCD(xk,x (α, β))]

• Conclusions:
• Similar unique encoding maps across different network architectures.
• Local Lipschitzness of the unique encoding from noise to image space.
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Reproducibility for Unconditional Diffusion Models

Reproducibility for other generative models

• Question: Dose model reproducibility appear to other generative
models?

• Conclusion: Reproducibility doesn’t appear for GAN and general
VAE;
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Correlation between Reproducibility, Memorizability &
Generalizability

“Memorization” and “Generalization” regimes

generalization (GL) score := 1− P
(
maxi∈[N ] [MSSCD(x,yi)] > 0.6

)
between the

generated sample x and all samples from training dataset {yi}Ni=1.

C3: The reproducibility of diffusion models manifests in two
distinct training regimes, both strongly correlated with the

model’s generalizability.
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Correlation between Reproducibility, Memorizability &
Generalizability

Theory for reproducibility in Memorization Regime

Theorem (1)

Suppose we train a diffusion model denoiser function ϵθ(x, t) with parameter θ

on a training dataset {yi}Ni=1 of N -samples, by minimizing the training loss

min
θ

L(ϵθ; t) = Ex0∼pdata(x)Ex∼pt(x|x0)[||ϵ− ϵθ(x, t)||2], (1)

assuming data x0 follows a multi-delta distribution pdata(x) =
1
N

∑N
i=1 δ(x− yi) ,

and the perturbation kernel pt(xt|x0) = N (xt; stx0, s
2
tσ

2
t I) with parameters

st, σt. Then we show the optimal denoiser ϵ∗θ(x; t) = argminϵθ
L(ϵθ; t) is:

ϵ∗θ(x; t) =
1

stσt

[
x− st

∑N
i=1 N (x; styi, s

2
tσ

2
t I)yi∑N

i=1 N (x; styi, s2tσ
2
t I)

]
. (2)

Moreover, suppose a trained diffusion model could converge to the optimal
denoiser ϵ∗θ(x; t) and we use a deterministic ODE sampler to generate images
using ϵ∗θ(x; t), then f : E 7→ I, which is determined by the ϵ∗θ(x; t) and the ODE
sampler, is an invertiable mapping and the inverse mapping f−1 is a unique
identifiable encoding.
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Correlation between Reproducibility, Memorizability &
Generalizability

Experimental verification of Theorem (1)

• Reproducibility score between theoretical results and experimental
results.

• Conclusion: Diffusion model could converge to the theoretical
solution when model capacity is enough.
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Reproducibility beyond Unconditional Diffusion Models

More than unconditional diffusion model

C4: Model reproducibility holds more generally across conditional
diffusion models, diffusion models for inverse problems, the

fine-tuning of diffusion models.

Huijie Zhang (EECS, University of Michigan) The Reproducibility in Diffusion Models October 28, 2023 15 / 23



Reproducibility beyond Unconditional Diffusion Models

Intro to conditional diffusion model

• Enable conditional generation, e.g. class condition, text-to-image,
image-to-image translation.[14].

• Change the denoiser from ϵθ(xt, t) to ϵθ(xt, t, c) for c ∈ C. Total
class C could be the class label, text, image, and so on.

• Utilize ϵθ(xt, t, c) for both training and sampling.
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Reproducibility beyond Unconditional Diffusion Models

Reproducibility of conditional diffusion model

RPcond Score := P (MSSCD(x
c
1,x

c
2) > 0.6 | c ∈ C), (xc

1,x
c
2) are generated by two

conditional models from the same initial noise and conditioned on the class c ∈ C
RPbetween Score := P

(
maxc∈C [MSSCD(x1,x

c
2)] > 0.6

)
, for an unconditional generation

x1 and conditional generation xc
2 starting from the same noise.

Model reproducibility of conditional models is evident and linked
with unconditional counterparts.
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Reproducibility beyond Unconditional Diffusion Models

Intro to diffusion model for inverse problem

• Inverse problem: reconstruct an unknown signal u from the
measurements z of the form z = A(u) + η, where A denotes some
(given) sensing operator and η is the noise.

• Enable conditional generation with only pre-trained unconditional
denoiser ϵθ(xt, t)

xt, x̂0 ← DeterministicSampler(ϵθ,xt+1, t+ 1, )
xt ← xt − ξt∇xt ||u−A (x̂0) ||22

• Diffusion Posterior Sampling (DPS) [1]
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Reproducibility beyond Unconditional Diffusion Models

Reproducibility of diffusion model for inverse problem

Model reproducibility largely holds only within the same type of
network architectures.
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Reproducibility beyond Unconditional Diffusion Models

Intro to diffusion model fine-tuning

• Pre-trained large diffusion model (e.g. stable diffusion), fine-tuning
only part of the diffusion model (e.g. attention layer, txt embedding.)
and on few-shot images.

• Obtain incredible generalizability, e.g. DreamBooth [15].
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Reproducibility beyond Unconditional Diffusion Models

Reproducibility of diffusion model fine-tuning

Pretrained on CIFAR-100, fine-tuning on CIFAR-10. Only fine-tuning the attention layer.

Partial fine-tuning reduces reproducibility but improves
generalizability in “memorization regime”.
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Future Directions

Future Direction

• Practical application Controllable data generation process through
noise space.

• For text-driven image generation tasks, by leveraging the same text
embeddings while varying noise inputs, potential applications including
adversarial attacks [24], robust defense [23], and copyright protection
[19, 18]

• In the context of solving inverse problems, we could select the input
noise for reducing the uncertainty and variance in our signal
reconstruction [5, 2, 10].

• Theoretical understandings Identifiable mapping from noise space
to image space in generalization regime, this question might related
to:
• Analyzing the generalizability of diffusion models [21].
• Connection between diffusion models and the Schrödinger bridge

[16, 3, 11, 4, 9, 8] (an optimal transport problem).
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• Theoretical understandings Identifiable mapping from noise space
to image space in generalization regime, this question might related
to:
• Analyzing the generalizability of diffusion models [21].
• Connection between diffusion models and the Schrödinger bridge

[16, 3, 11, 4, 9, 8] (an optimal transport problem).
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