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-
Invariant Subspaces of Training Deep Nonlinear Networks

We track the learning dynamics of singular values in the penultimate layer
a wide range of models (linear model, MLP, VGG, ViT-B):

ai(t)

Linear Model

W = Wp+ W
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-
Invariant Subspaces of Fine-tuning Language Models

Fine-tuning BERT with deep overparameterized adaptation on the STS-B
dataset:

Train Loss
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-
Theoretical Study on Deep Linear Networks

The GD learning process takes place only withimaimal
invariant subspace of each weight matrix.
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-
Theoretical Study on Deep Linear Networks

Training data f(x;;yi)gY; R% R% with
X =[x1 X2 12t xn]2R& Ny =[ypy, i yn]2 RS N
Deep linear network (DLN):
f (x) = WL Wix = WX,

whereW; 2 R4 4 1and = fw,g;.
Loss function:
1

kf (i) yik,%:EkWL;lx Y K2 :

X
min ()= %
i=1
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Why Deep Linear Network?
Training a 7-layer nonlinear MLP vs. hybrid MLP on CIFAR-10
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Why Deep Linear Network?
Training a 7-layer nonlinear MLP vs. hybrid MLP on CIFAR-10

Shallow layers are increasirigear separability, deeper layers are
conductingfeature compression.
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NS
Why Deep Linear Network?

(a) a nonlinear MLP with 7 layers

(b) a hybrid network with 3-Layer MLP + 4-Layer DLN

Qing Qu (EECS, University of Michigan ) Law of Parsimony in GD



Why Deep Linear Network?
Training a 7-layer nonlinear MLP vs. hybrid MLP on CIFAR-10

Deep linear layers mimic deep layers in nonlinear networks for
feature learning.
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-
The Role of Depth in Linear Networks?

Training 9-layer networks on F-MNIST (left) and CIFAR-10 (right)

Depth improves generalization and feature compression.
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N
Main Results

The gradient descent (GD) learning process takes place only with
a minimal invariant subspace of each weight matrix.

Qing Qu (EECS, University of Michigan ) Law of Parsimony in GD August 25, 2024 10/57



-
Implications of Our Results

The parsimonious structures in GD dynamics leads to

E cient low-rank training and network compression
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-
Implications of Our Results

The parsimonious structures in GD dynamics leads to

E cient low-rank training and network compression
Better understandings of hierarchical representations
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Outline

@ Invariant Low-Dim Subspace in Gradient Dynamics



Deep Linear Networks

Training data f(x;;yi)gY; R% R% with
X =[x1 X2 12t xn]2R& Ny =[ypy, i yn]2 RS N
Deep linear network (DLN):
f (x) = WL Wix = WX,

whereW; 2 R4 4 1and = fw,g;.
Loss function:

. 1 X 1
min ()= 5 Kk (xi) yik,%:EkWL;lx Y K2 :
i=1
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Training DLNs via Gradient Descent (GD)

Orthogonal initialization. We use"-scale orthogonal matrices for
some" > 0, with

W/, (0)W,(0) = "2l or W)W, (0)= "2I; 8I2]L];

depending on the size aV,.
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Training DLNs via Gradient Descent (GD)

Orthogonal initialization. We use"-scale orthogonal matrices for
some" > 0, with

W/, (0)W,(0) = "2l or W)W, (0)= "2I; 8I2]L];

depending on the size aV,.

Learning dynamics of GD. We update all weights via GD for
t=1;2;::: as

wWi(t) =@ Wit 1) rw, ( (t 1); 812[L]

where > 0 is the learning rate and 0 controls weight decay.
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Invariant Low-Dim Subspace in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:
The weight matrices aresquareexcept the last layer, i.e.,
dy=d;=dyo = = d_ 1= dfor somed?2 N;.
The input data iswhitenedin the sense thaXX > = 14 .1
The matrix Y has certainlow-dimensional structures (e.g.,
low-rank or wide matrix).
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Invariant Low-Dim Subspace in Gradient Dynamics

Training DLNs via Gradient Descent (GD)
We study the GD iterates for training DLNs under the following
assumptions:
The weight matrices aresquareexcept the last layer, i.e.,
dy=d;=dyo = = d_ 1= dfor somed?2 N;.
The input data iswhitenedin the sense thaXX > = 14 .1

The matrix Y has certainlow-dimensional structures (e.g.,
low-rank or wide matrix).

Case 1: low-rank matrix Y recovery:
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Invariant Low-Dim Subspace in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

The weight matrices arsquareexcept the last layer, i.e.,
dX=d1=d2= :d|_ 1=dforsomed2N+.
The input data iswhitenedin the sense thaXX > = |4, .2

The matrix Y has certainlow-dimensional structures (e.g.,
low-rank or wide matrix).

Case 2: Multi-class classi cation:

2 3
1 1

Yy =4 1 1 S=1¢ 12

2For any full rankX 2 R N with N  dy, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Invariant Low-Dim Subspace in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DL
We train aL = 3 layer DLN withdy = dy =30 andr :=rank(Y)=3.

Figure: Evolution of SVD of the weight matrix W (t) = U(t) 1(t)Vi(t)”.
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Invariant Low-Dim Subspace in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DL
We train aL = 3 layer DLN withdy = dy =30 andr :=rank(Y)=3.

Figure: Evolution of SVD of the weight matrix W (t) = U(t) 1(t)Vi(t)”.

Left: the evolution of singular values;;(t) throughout trainingt  0;
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Invariant Low-Dim Subspace in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DL
We train aL = 3 layer DLN withdy = dy =30 andr :=rank(Y)=3.

Figure: Evolution of SVD of the weight matrix W (t) = U(t) 1(t)Vi(t)”.

Left: the evolution of singular values;;(t) throughout trainingt  0;
Middle: the evolution of\ (v4i(t);v1i(0)) throughout trainingt 0;
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Invariant Low-Dim Subspace in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DL
We train aL = 3 layer DLN withdy = dy =30 andr :=rank(Y)=3.

Figure: Evolution of SVD of the weight matrix W (t) = U(t) 1(t)Vi(t)”.

Left: the evolution of singular values;;(t) throughout trainingt  0;
Middle: the evolution of\ (v4;(t);v1;(0)) throughout trainingt 0O;
Right: the evolution of\ (u4;(t);u4;(0)) throughout trainingt 0.
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Invariant Low-Dim Subspace in Gradient Dynamics
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The Evolution of Singular Spaces in GD lterates for DL

Figure: Evolution of SVD of the weight matrix W (t) = U(t) 1(t)Ve(t)”.

The GD learning process takes place only withimaimal
invariant subspace of each weight matrix.
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