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Invariant Subspaces of Training Deep Nonlinear Networks

We track the learning dynamics of singular values in the penultimate layer
a wide range of models (linear model, MLP, VGG, ViT-B):

W = W0 + �W
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Invariant Subspaces of Fine-tuning Language Models

Fine-tuning BERT with deep overparameterized adaptation on the STS-B
dataset:
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Theoretical Study on Deep Linear Networks

The GD learning process takes place only within aminimal
invariant subspace of each weight matrix.
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Theoretical Study on Deep Linear Networks

� Training data f (x i ; y i )gN
i =1 � Rdx � Rdy with

X = [ x 1 x 2 : : : x N ] 2 Rdx � N ; Y = [ y1 y2 : : : yN ] 2 Rdy � N

� Deep linear network (DLN):

f � (x ) := W L � � � W 1x = W L :1x ;

whereW l 2 Rdl � dl � 1 and � = f W l gL
l=1 .

� Loss function:

min
�

`(� ) =
1
2

NX

i =1

kf � (x i ) � y i k
2
F =

1
2

kW L :1X � Y k2
F :
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Why Deep Linear Network?
Training a 7-layer nonlinear MLP vs. hybrid MLP on CIFAR-10

Shallow layers are increasinglinear separability , deeper layers are
conductingfeature compression.
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Why Deep Linear Network?

(a) a nonlinear MLP with 7 layers

(b) a hybrid network with 3-Layer MLP + 4-Layer DLN
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Why Deep Linear Network?
Training a 7-layer nonlinear MLP vs. hybrid MLP on CIFAR-10

Deep linear layers mimic deep layers in nonlinear networks for
feature learning.
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The Role of Depth in Linear Networks?

Training 9-layer networks on F-MNIST (left) and CIFAR-10 (right)

Depth improves generalization and feature compression.
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Main Results

The gradient descent (GD) learning process takes place only within
a minimal invariant subspace of each weight matrix.
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Implications of Our Results

The parsimonious structures in GD dynamics leads to

� E�cient low-rank training and network compression
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Implications of Our Results

The parsimonious structures in GD dynamics leads to

� E�cient low-rank training and network compression
� Better understandings of hierarchical representations
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Invariant Low-Dim Subspace in Gradient Dynamics

Deep Linear Networks

� Training data f (x i ; y i )gN
i =1 � Rdx � Rdy with

X = [ x 1 x 2 : : : x N ] 2 Rdx � N ; Y = [ y1 y2 : : : yN ] 2 Rdy � N

� Deep linear network (DLN):

f � (x ) := W L � � � W 1x = W L :1x ;

whereW l 2 Rdl � dl � 1 and � = f W l gL
l=1 .

� Loss function:

min
�

`(� ) =
1
2

NX

i =1

kf � (x i ) � y i k
2
F =

1
2

kW L :1X � Y k2
F :
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Invariant Low-Dim Subspace in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

� Orthogonal initialization. We use"-scale orthogonal matrices for
some" > 0, with

W >
l (0)W l (0) = "2I or W l (0)W >

l (0) = "2I ; 8l 2 [L ];

depending on the size ofW l .

� Learning dynamics of GD. We update all weights via GD for
t = 1 ; 2; : : : as

W l (t) = (1 � �� )W l (t � 1) � � r W l `(� (t � 1)); 8 l 2 [L ];

where� > 0 is the learning rate and� � 0 controls weight decay.
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Invariant Low-Dim Subspace in Gradient Dynamics

Training DLNs via Gradient Descent (GD)
We study the GD iterates for training DLNs under the following
assumptions:

� The weight matrices aresquareexcept the last layer, i.e.,
dx = d1 = d2 = � � � = dL � 1 = d for somed 2 N+ .

� The input data iswhitenedin the sense thatXX > = I dx .1

� The matrix Y has certainlow-dimensional structures (e.g.,
low-rank or wide matrix).

Case 1: low-rank matrix Y recovery:

1For any full rank X 2 Rdx � N with N � dx , whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Invariant Low-Dim Subspace in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

� The weight matrices aresquareexcept the last layer, i.e.,
dx = d1 = d2 = � � � = dL � 1 = d for somed 2 N+ .

� The input data iswhitenedin the sense thatXX > = I dx .2

� The matrix Y has certainlow-dimensional structures (e.g.,
low-rank or wide matrix).

Case 2: Multi-class classi�cation:

Y =

2

4
1 � � � 1

1 � � � 1
1 � � � 1

3

5 = I K 
 1>
n

2For any full rank X 2 Rdx � N with N � dx , whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Invariant Low-Dim Subspace in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs
We train a L = 3 layer DLN withdx = dy = 30 and r := rank( Y ) = 3 .

Figure:Evolution of SVD of the weight matrix W 1(t) = U1(t)� 1(t)V1(t)> .

� Left: the evolution of singular values� 1i (t) throughout trainingt � 0;
� Middle: the evolution of\ (v1i (t); v1i (0)) throughout trainingt � 0;
� Right: the evolution of\ (u 1i (t); u 1i (0)) throughout trainingt � 0.
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Invariant Low-Dim Subspace in Gradient Dynamics
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Invariant Low-Dim Subspace in Gradient Dynamics

The Evolution of Singular Spaces in GD Iterates for DLNs

Figure:Evolution of SVD of the weight matrix W 1(t) = U1(t)� 1(t)V1(t)> .

The GD learning process takes place only within aminimal
invariant subspace of each weight matrix.
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