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The Emergence of Generative AI1

1Image credited to Prof. Mengdi Wang
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The Family of Generative Models

Generative models in the past:

(a) VAE (Kingma & Wellings, 2013):
poor generation quality.

(b) GAN (Goodfellow et al. 2014):
unstable to train on large dataset.
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A Revolution by Diffusion Models2

(Sohl-Dickstein et al. 2015, Song and Ermon 2019, Ho et al. 2020)

2https://yang-song.net/blog/2021/score/
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Video Generation: Sora - OpenAI3

3https://openai.com/sora
Qing Qu (EECS, University of Michigan) The Generalizability in Diffusion Models December 21, 2024 6 / 71



What are Diffusion Models?

• Forward process: progressively adding noise to an image x0;
4

xt = αtx0 + βtϵ, ϵ ∼ N (0, I).

• Backward process: starting from a random noise ϵ, progressively
denoising to generate an image x0

4Here, αt and βt are some pre-defined noise scales.
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Forward Process: Progressively Adding Noise

Forward stochastic differential equation (SDE):

dx = f(x, t)dt+ g(t) · dw
Brownian

.

• f(·, t) : Rd → Rd and g(·) : R→ R are pre-defined diffusion
and drift functions, respectively.5

5Here, f(x, t) = dlogαt
dt

x and g(t) =
dβ2

t
dt

− 2β2
t
dlogαt

dt
.
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Generative Backward Process: Progressive Denoising

Backward probability flow ODE (Song et al., 2020):

dx =

[
f(x, t)− 1

2
g(t)2 · ∇x log pt(x)

score function

]
dt.

Deterministic, much faster with slightly inferior sample quality.6

6For example, EDM (Karras et al., 2022), DPM-solver (Lu et al., 2022).
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How to Estimate the Score Function?
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How do We Learn the Neural Network?

Training loss: we can learn the denoiser sθ(xt, t) simply by solving7

min
θ
L (θ) := Et∼U [0,1], x0∼p(x0)

xt∼p(xt|x0)

[
β2
t ∥∇xt log p(xt)− sθ(xt, t)∥22

]

= Et∼U [0,1], x0∼p(x0)
ϵ∼N (0,I)

[
∥ϵ+ βtsθ(xt, t)∥22

]
+ const.

7This can be achieved by sampling x0 ∼ p(x0), t ∼ U [0, 1], and ϵ ∼ N (0, I), to run
stochastic gradient descent on L (θ) to optimize the network parameters θ.
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Mysteries Behind the Success of Diffusion Models

Fundamental questions to be answered:

• Generalizability (theory): When and why do diffusion models
generate new samples?

• Controllability (practice): How can we control and
manipulate the generated contents?
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Outline
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Reproducibility in Diffusion Models

Q1: Starting from the same noise input, how are the generated
data samples from various diffusion models related to each other?
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Reproducibility in Diffusion Model

Q1: Starting from the same noise input, how are the generated
data samples from various diffusion models related to each other?

Training on the same dataset, sampling by an ODE deterministic sampler.
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How to Measure Reproducibility Quantitatively?

Self-supervised copy detection (SSCD) similarity MSSCD(·, ·).
• Here, h(·) = SSCD(·) represents a neural descriptor for copy
detection. (Pizzi et al.’22, Somepalli et al.’23)
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How to Measure Reproducibility Quantitatively?

Reproducibility (RP) Score:

RP Score := P (MSSCD(x1,x2) > 0.6) .

• It is a probability measure of the similarity between two models.

• We sample 10K random noise pairs to estimate the probability.
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Quantitative Analysis of Diffusion Models (Cifar10)

• Network architectures. Transformer (U-ViT) vs U-Nets.

• Training loss. Consistency loss (CT), EDMv1, and others.

• Sampling procedures. DPM (DDPMv4), EDMv1, vs CT.

• Perturbation kernels. VP (DDPMv4), sub-VP(DDPMv6), EDMv1.
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Reproducibility is Rare in Other Generative Models

Figure: Reproducibility for GANs and VAEs.

• Before this work, only for VAE with a factorized prior distribution over
the latent variables (Khemakhem et al. 2020).

• Prevalent phenomenon in diffusion model!
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Complementary Results from Concurrent Work8

Non-overlapping training data from the same distribution: The same
model trained from two exclusive subsets of the same training dataset

8Z Kadkhodaie, et al.’24 ”Generalization in diffusion models arises from
geometry-adaptive harmonic representation.” (ICLR’24 Outstanding Paper Award)
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Reproducibility Manifest in Two Different Regimes

Reproducibility (RP) Score:

RP Score := P (MSSCD(x1,x2) > 0.6) .

Higher implies better reproducibility between two diffusion models.
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Reproducibility Manifests in Two Different Regimes

Generalization (GL) score is defined to

measure the difference between a newly generated sample x and
the whole training dataset {yi}Ni=1.
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Reproducibility Manifests in Two Different Regimes

Generalization (GL) score (or perhaps memorization score?)

GL Score := 1− P
(
max
i∈[N ]

[MSSCD(x,yi)] > 0.6

)
,

is also a probability measure. Higher implies better generalizability.
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From “Memorization” to “Generalization”9

Reproducibility manifests in two distinct regimes, with a strong
correlation with model’s generalizability.

9Thanks AWS and Amazon Research Awards for computing resources
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Why Does Reproducibility Manifest in Distinct Regimes?

• How well does diffusion model sθ approximate the score
function ∇x log pt(x) ?

• What distribution p(x0) are we learning the score function for?
(depending on training data size vs. model capacity)
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Learning Empirical Distribution in Memorization Regime

Data Assumption: Given a training dataset S = {yi}Ni=1 of N -
samples, the empirical distribution pemp(x) of S can be characterized
by the multi-delta distribution:

pemp(x) =
1

N

N∑
i=1

δ(x− yi).
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Interpolation/Extrapolation of True Data Distribution

The curse of dimensionality: for image dataset (e.g., CelebA, Cifar),

pemp(x) =
1

N

N∑
i=1

δ(x− yi) ≈ pdata(x),

to be ε-close, we could need at least N ≥ (L/ε)d samples!10

10We can draw this conclusion by a simple covering argument, the image dimension
d = 32× 32 = 1024 for Cifar. See also recent work by Li et al., 2024.
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Interpolation/Extrapolation of True Data Distribution

The curse of dimensionality: for image dataset (e.g., CelebA, Cifar),

pemp(x) =
1

N

N∑
i=1

δ(x− yi) ≈ pdata(x),

where we need an extremely large number of samples N ≥ (L/ε)d!
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Intrinsic Low-Dimensionality of the Model

Evaluating the rank ratio of the Jacobian Jθ,t(xt) = ∇xtxθ(xt).
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Intrinsic Low-Dimensionality of the Model

• Denoising autoencoder (DAE) formulation:

min
θ

ℓ(θ) :=

N∑
i=1

∫ 1

0
λtEϵ∼N (0,In)

[∥∥∥xθ(xt, t)− x(i)
∥∥∥2]dt

• Tweedie’s formula, xt = αtx
(i) + βtϵ:

xθ(xt, t)
neural networks, like U-Net

≈ E[x0|xt]
posterior mean

= (xt + β2
t ∇x log pt(x)

score function

)/αt.
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The Intrinsic Low-Dimensionality of Data11

The low-dim of model reflects the intrinsic dimension of our data:

Intrinsic dimension of image datasets.

The blessing of dimensionality: the intrinsic dimension r of image
data is much lower than the ambient dimension d, i.e., r ≪ d.

11Image credit: P. Pope et al., ICLR’2021.
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Study Generalization under Low-Dimensional Models12

Data Assumption: mixture of low-rank Gaussian (MoLRG)

pdata(x) =
1

K

∑
i∈[K]

N (x;0,Σi) with Σi = UiU
⊤
i ,

where K is the number of clusters, and Ui ∈ Rd×r is the low-rank
basis for the ith cluster with r ≪ d, with Ui ⊥ Uj(i ̸= j).

12Chen et al. Score Approximation, Estimation and Distribution Recovery of
Diffusion Models on Low-Dimensional Data. ICML’23.
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Study Generalization under Low-Dimensional Models13

Data Assumption: mixture of low-rank Gaussian (MoLRG)

pdata(x) =
1

K

∑
i∈[K]

N (x;0,Σi) with Σi = UiU
⊤
i ,

where K is the number of clusters, and Ui ∈ Rd×r is the low-rank
basis for the ith cluster with r ≪ d, with Ui ⊥ Uj(i ̸= j).

Lemma. Suppose that pdata ∼ MoLRG. For all t > 0,

E [x0|xt] =
αt

α2
t + β2

t

K∑
k=1

wkU
⋆
kU

⋆⊤
k xt,

where wk =
πk exp(ϕt∥U⋆⊤

k xt∥2)∑K
k=1 πk exp(ϕt∥U⋆⊤

k xt∥2)
and ϕt := α2

t /(2β
2
t (α

2
t + β2

t )).

13As shown by Wang et al.’23, the learned data distribution can be approx. by MoG.
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A Simple Case Study: Single Low-rank Gaussian K = 1

Theorem (Equivalence to PCA)

Suppose that

• The distribution p(x0) = N
(
x0;0,UgU

⊤
g

)
with Ug ∈ Od×r;

• For each t ∈ [0, 1] , we parameterize the denoiser xU (xt, t) as

xU (xt, t) =
αt

α2
t + β2

t

·UU⊤xt

Let Y =
[
y1 · · · yN

]
be the training data matrix. Then we have

• The training loss can be reduced to the loss of the PCA problem:

max
U
∥U⊤Y ∥2F , s.t. U⊤U = Ir.

• Thus, it holds for the global solution U⋆ w.h.p. that
(i) If N ≥ r, we have ∥U⋆U

⊤
⋆ −UgU

⊤
g ∥F < δ;

(ii) If N < r, we have ∥U⋆U
⊤
⋆ −UgU

⊤
g ∥F ≥

√
r −N − δ.
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Study of Multiple Low-Dim Subspaces K > 1

Theorem (Equivalence to Subspace Clustering)

Suppose that

• Suppose that p(x0) is MoLRG with K > 1;

• If we parameterize the DAE network

xθ(xt, t) =
αt

α2
t + β2

t

K∑
k=1

wk(θ;xt)UkU
⊤
k xt.

Then the DAE training problem is equivalent to subspace clustering

max
θ

1

N

K∑
k=1

∑
i∈Ck(θ)

∥U⊤
k x(i)∥2 s.t.

[
U1, . . . ,UK

]
∈ On×dK ,

where Ck(θ) :=
{
i ∈ [N ] : ∥U⊤

k x(i)∥ ≥ ∥U⊤
l x(i)∥, ∀l ̸= k

}
for k ∈ [K].
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Phase Transitions on MoLRG with Parameterized Networks
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Phase Transition from Memorization to Generalization

(a) MoLRG distribution (b) Real image data distribution

Phase transition for diffusion models trained with U-Net.
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Semantic Meanings of the Low-Dimensional Basis
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Semantic meanings of the eigenvectors U of the Jacobian Jθ(xt, t).
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LOw-rank COntrollable Image Editing (LOCO Edit)
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Open mouth Close mouth

Original Transfer (other)

Eye shape Mouth shape Hair curvature Hair amount

(d) Linearity
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LOw-rank COntrollable Image Editing (LOCO Edit)
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Editing in Text-to-image Diffusion Models

Stable Diffusion

Ear up

+	“glasses”

DeepFloyd

mask

mask

Latent Consistency

+	“glasses”mask

Remove beardmask Side viewmask

mask +	“curly hair”

(a) Unsupervised T2I Edit

(b) Text-supervised T2I Edit

Figure: T-LOCO Edit on T2I diffusion models.
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How does LOCO Edit Work?

Consider a unconditional diffusion model sθ:

• Posterior mean predictor (PMP) for the image x0:

fθ,t(xt; t) :=
xt + (1− αt) sθ(xt, t)√

αt
≈ E[x0|xt],

• The 1st order Taylor expansion of fθ,t(xt + λ∆x) at xt:

lθ(xt;λ∆x) := fθ,t(xt) + λJθ,t(xt) ·∆x,

where Jθ,t(xt) = ∇xtfθ,t(xt) is the Jacobian of fθ,t(xt)
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How does LOCO Edit Work?

(a) Low-rankness of the Jacobian (b) Local linearity of PMP

Two key properties:

• Local linearity of the PMP fθ,t(xt) ≈ lθ(xt;λ∆x).

• Low-rankness of the Jacobian Jθ,t(xt) = UΣV ⊤ =
∑r

i=1 σiuiv
⊤
i ;
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How does LOCO Edit Work?

Jθ,t(xt) = UΣV ⊤ =

r∑
i=1

σiuiv
⊤
i

• Local linearity of the PMP with ∆x = vi, one column of V :

fθ,t(xt + λvi) ≈ fθ,t(xt) + λJθ,t(xt)vi

= fθ,t(xt) + λ

r∑
j=1

σjujv
⊤
j vi

= x̂0,t + λσiui.

• Low rankness of the Jacobian Jθ,t(xt) (e.g., t = 0.7):
• V can be computed efficiently via generalized power method!
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Overview of LOCO Edit

• Illustration of LOCO Edit for unconditional diffusion models:

DDIM-Inv

DDIM

Find

2

1

• Visualizing editing directions identified via LOCO Edit:

Eye Hair Lip Eyebrow Nose Dog ear Dogmouth

Eye Hair Lip Eyebrow Nose Dog ear Dogmouth

Eye Lip Eyebrow Nose Dog ear Dog mouth
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Visual Comparison with Existing Methods

Origin NoiseCLR BlendedDiffusion LOCO (Ours)Asyrp
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Origin NoiseCLR BlendedDiffusion LOCO (Ours)Asyrp
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Shallow Diffuse: Robust and Invisible Watermarking
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Shallow Diffuse: Robust and Invisible Watermarking
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Shallow Diffuse: Robust and Invisible Watermarking

Key idea: Inject the watermark ∆x in the Null Space of Jθ,t(xt):

fθ,t(x
W
t ) = fθ,t(xt) + λJθ,t(xt) ·∆x

≈0

≈ fθ,t(xt)
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Shallow Diffuse: Robust and Invisible Watermarking
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Conclusion
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Conclusion

• Diffusion models exhibit unique reproducibility which
manifests in two distinct data regimes: memorization vs.
generalization.

• Diffusion models can learn low-dimensional data distribution
without the curse of dimensionality.

• Diffusion models can be controlled through manipulating the
low-dimensional semantic subspaces.

• Theory: fundamental questions on generalization.

• Practice: many potential applications of our findings:
• More efficient training;
• Interpretable & controllable data generation;
• Model safety, privacy, and robustness;
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Reproducibility of Class Conditional Diffusion Models

(a) Visualization. (b) RPcond Score

Figure: Tested on ImageNet-1k dataset for pre-trained diffusion models.
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Model Capacity vs. Training Data Size
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Reproducibility of Text2Image Stable Diffusion Models

(a) Visualization of stable diffusion with same
prompts. Each column has the same initial noise.

(b) Reproducibility score

Only V1-3 and V1-4 have exactly the same training dataset. Details of
their relationships are on StableDiffusion’s Github Page.
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Conditional Diffusion Models

• Enable conditional generation, e.g. class condition, text-to-image,
image-to-image translation [2].

• Change the denoiser from ϵθ(xt, t) to ϵθ(xt, t, c) for c ∈ C. The set C
could be the class label, text, image, and so on.

• Utilize ϵθ(xt, t, c) for both training and sampling.
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Reproducibility of Class Conditional Diffusion Models

RPcond Score := P (MSSCD(x
c
1,x

c
2) > 0.6 | c ∈ C), (xc

1,x
c
2) are generated by two

conditional models from the same initial noise and conditioned on the class c ∈ C
RPbetween Score := P

(
maxc∈C [MSSCD(x1,x

c
2)] > 0.6

)
, for an unconditional generation

x1 and conditional generation xc
2 starting from the same noise.

Model reproducibility of conditional models persists and is linked
with unconditional counterparts.
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Diffusion Models for Solving Inverse Problems

• Inverse problem: reconstruct an unknown signal u from the
measurements z of the form z = A(u) + η, where A denotes some
(given) sensing operator and η is the noise.

• Sampling: Enable conditional generation with only pre-trained
unconditional denoiser ϵθ(xt, t):
xt, x̂0 ← DeterministicSampler(ϵθ,xt+1, t+ 1, )
xt ← xt − ξt∇xt ||z −A (x̂0) ||22
• Diffusion Posterior Sampling (DPS) [1]
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Reproducibility of diffusion model for inverse problem

Model reproducibility largely holds only within the same type of
network architectures.
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Fine-tuning Diffusion Models

• For pre-trained large diffusion model (e.g. stable diffusion), we often
fine-tune only a small portion of the parameters (e.g. attention layer,
text embedding) on few-shot images.

• Obtain incredible generalizability, e.g. DreamBooth [3].
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Reproducibility of diffusion model fine-tuning

Pretrained on CIFAR-100, fine-tuning on CIFAR-10. Only fine-tuning the attention layer.

Partial fine-tuning reduces reproducibility but improves
generalizability in “memorization regime”.
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Study Generalization under Low-Dimensional Models
We learn sθ with U-Nets. We set C = 2 and d = 48, varying N and r.

We measure the score distance and generalization as14

Lscore := Et∼U(0,1),x0∼p(x0)
xt∼pt(xt|x0)

[
∥sθ(xt, t)− sMoLRG(xt, t)∥2

]
,

Lgeneralize := Eϵ∼N (0,βtI)

[
min
i∈[N ]

||Fθ(ϵ)− yi||2
]
.

14Here, Fθ(ϵ) is the mapping from the noise space E to the image space I induced by
the learned score sθ and ODE sampler.
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Quantitative results of LOCO Edit

Method Name Pullback ∂ϵt/∂xt NoiseCLR Asyrp BlendedDiffusion LOCO (Ours)

Local Edit Success Rate↑ 0.32 0.37 0.32 0.47 0.55 0.80
LPIPS↓ 0.16 0.13 0.14 0.22 0.03 0.08
SSIM↑ 0.60 0.66 0.68 0.68 0.94 0.71

Transfer Success Rate↑ 0.14 0.24 0.66 0.58 Can’t Transfer 0.91
Transfer Edit Time↓ 4s 2s 5s 3s Can’t Transfer 2s
#Images for Learning 1 1 100 100 1 1

Learning Time↓ 8s 44s 1 day 475s 120s 79s
One-step Edit? ✓ ✓ ✗ ✗ ✗ ✓

No Additional Supervision? ✓ ✓ ✓ ✗ ✗ ✓
Theoretically Grounded? ✗ ✗ ✗ ✗ ✗ ✓

Localized Edit? ✗ ✗ ✗ ✗ ✓ ✓

Table: Comparisons with existing methods. Our LOCO Edit excels in localized
editing, transferability and efficiency, with other intriguing properties such as
one-step edit, supervision-free, and theoretically grounded.
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