The Emergence of Generalizability and Semantic Low-Dim

Subspaces in Diffusion Models

Qing Qu

EECS, University of Michigan

December 21, 2024

< 行

¹Image credited to Prof. Mengdi Wang

< □ > < □ > < □ > < □ > < □ > < □ >

The Family of Generative Models

э

→ < ∃ →</p>

The Family of Generative Models

Generative models in the past:

(a) VAE (Kingma & Wellings, 2013): poor generation quality.

< ∃⇒

< 行

The Family of Generative Models

Generative models in the past:

(a) VAE (Kingma & Wellings, 2013): poor generation quality.

(b) GAN (Goodfellow et al. 2014): unstable to train on large dataset.

A Revolution by Diffusion Models²

(Sohl-Dickstein et al. 2015, Song and Ermon 2019, Ho et al. 2020)

4/71

 ²https://yang-song.net/blog/2021/score/
 Image: Amage: Amage:

Text-to-image Generation (DALL·E)

(Zhang et al.'23, ICCV best paper)

イロト イポト イヨト イヨト

э

Video Generation: Sora - OpenAl³

³https://openai.com/sora

Qing Qu (EECS, University of Michigan) The Generalizability in Diffusion Models

→

э

What are Diffusion Models?

• Forward process: progressively adding noise to an image x_0 ;⁴

$$\boldsymbol{x}_t = \alpha_t \boldsymbol{x}_0 + \beta_t \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}).$$

• Backward process: starting from a random noise ϵ , progressively denoising to generate an image x_0

⁴Here, α_t and β_t are some pre-defined noise scales. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Forward Process: Progressively Adding Noise

Forward stochastic differential equation (SDE):

$$\mathrm{d} \boldsymbol{x} = f(\boldsymbol{x},t) \mathrm{d} t + g(t) \cdot \frac{\mathrm{d} \boldsymbol{w}}{\mathrm{Brownian}}$$

• $f(\cdot, t) : \mathbb{R}^d \to \mathbb{R}^d$ and $g(\cdot) : \mathbb{R} \to \mathbb{R}$ are pre-defined *diffusion* and *drift* functions, respectively.⁵

⁵Here, $f(\boldsymbol{x},t) = \frac{\mathrm{dlog}\alpha_t}{\mathrm{d}t}\boldsymbol{x}$ and $g(t) = \frac{\mathrm{d}\beta_t^2}{\mathrm{d}t} - 2\beta_t^2 \frac{\mathrm{dlog}\alpha_t}{\mathrm{d}t}$.

Generative Backward Process: Progressive Denoising

Backward probability flow ODE (Song et al., 2020):

$$\mathsf{d}\boldsymbol{x} = \left[f(\boldsymbol{x},t) - \frac{1}{2}g(t)^2 \cdot \left[\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x})\right]\right] \mathsf{d}t.$$
score function

⁶For example, EDM (Karras et al., 2022), DPM-solver (Lu et al., 2022). 🗈 🛛 🧧 🦿

Generative Backward Process: Progressive Denoising

Backward probability flow ODE (Song et al., 2020):

$$\mathsf{d}\boldsymbol{x} = \left[f(\boldsymbol{x},t) - \frac{1}{2}g(t)^2 \cdot \left[\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x})\right]\right] \mathsf{d}t.$$
score function

Deterministic, much faster with slightly inferior sample quality.⁶

⁶For example, EDM (Karras et al., 2022), DPM-solver (Lu et al., 2022), 🗈 🛛 🧧 🖉

How to Estimate the Score Function?

A D N A B N A B N A B N

э

How to Estimate the Score Function?

A D N A B N A B N A B N

э

How do We Learn the Neural Network?

Training loss: we can learn the denoiser $s_{\theta}(x_t, t)$ simply by solving⁷

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) := \mathbb{E}_{t \sim \mathcal{U}[0,1], \boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)} \left[\beta_t^2 \| \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t) - \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) \|_2^2 \right]$$
$$\underset{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t | \boldsymbol{x}_0)}{\overset{}{}}$$

⁷This can be achieved by sampling $x_0 \sim p(x_0)$, $t \sim \mathcal{U}[0,1]$, and $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, to run stochastic gradient descent on $\mathcal{L}(\boldsymbol{\theta})$ to optimize the network parameters $\boldsymbol{\theta}$.

How do We Learn the Neural Network?

Training loss: we can learn the denoiser $s_{\theta}(x_t, t)$ simply by solving⁷

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) := \mathbb{E}_{t \sim \mathcal{U}[0,1], \boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)} \left[\beta_t^2 \| \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t) - \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) \|_2^2 \right]$$
$$= \boxed{\mathbb{E}_{t \sim \mathcal{U}[0,1], \boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)} \left[\| \boldsymbol{\epsilon} + \beta_t \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) \|_2^2 \right]} + \text{const.}$$

⁷This can be achieved by sampling $\boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)$, $t \sim \mathcal{U}[0,1]$, and $\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{I})$, to run stochastic gradient descent on $\mathcal{L}(\boldsymbol{\theta})$ to optimize the network parameters $\boldsymbol{\theta}$.

Mysteries Behind the Success of Diffusion Models

Fundamental questions to be answered:

• **Generalizability (theory):** When and why do diffusion models generate new samples?

Mysteries Behind the Success of Diffusion Models

Fundamental questions to be answered:

- **Generalizability (theory):** When and why do diffusion models generate new samples?
- **Controllability (practice):** How can we control and manipulate the generated contents?

ヘロト 人間ト ヘヨト ヘヨト

Outline

イロト イポト イヨト イヨト

2

Outline

A D N A B N A B N A B N

э

Reproducibility in Diffusion Models

Q1: Starting from the same noise input, how are the generated data samples from various diffusion models related to each other?

Reproducibility in Diffusion Models

Q1: Starting from the same noise input, how are the generated data samples from various diffusion models related to each other?

Reproducibility in Diffusion Model

Q1: Starting from the **same noise input**, how are the generated data samples from various diffusion models related to each other?

Training on the same dataset, sampling by an ODE deterministic sampler.

・ロト ・ 同ト ・ ヨト ・ ヨト

How to Measure Reproducibility Quantitatively?

Self-supervised copy detection (SSCD) similarity $\mathcal{M}_{SSCD}(\cdot, \cdot)$.

• Here, $h(\cdot) = SSCD(\cdot)$ represents a neural descriptor for copy detection. (Pizzi et al.'22, Somepalli et al.'23)

- 4 目 ト 4 日 ト

How to Measure Reproducibility Quantitatively?

Reproducibility (RP) Score:

$$\mathsf{RP} \; \mathsf{Score} \; := \; \mathbb{P} \left(\mathcal{M}_{\mathsf{SSCD}}(oldsymbol{x}_1, oldsymbol{x}_2) > 0.6
ight).$$

- It is a *probability measure* of the similarity between two models.
- We sample 10K random noise pairs to estimate the probability.

Quantitative Analysis of Diffusion Models (Cifar10)

- Network architectures. Transformer (U-ViT) vs U-Nets.
- Training loss. Consistency loss (CT), EDMv1, and others.
- Sampling procedures. DPM (DDPMv4), EDMv1, vs CT.
- Perturbation kernels. VP (DDPMv4), sub-VP(DDPMv6), EDMv1.

Qing Qu (EECS, University of Michigan)

The Generalizability in Diffusion Models

December 21, 2024

Reproducibility is Rare in Other Generative Models

Figure: Reproducibility for GANs and VAEs.

• Before this work, only for VAE with a factorized prior distribution over the latent variables (Khemakhem et al. 2020).

Reproducibility is Rare in Other Generative Models

Figure: Reproducibility for GANs and VAEs.

- Before this work, only for VAE with a factorized prior distribution over the latent variables (Khemakhem et al. 2020).
- Prevalent phenomenon in diffusion model!

Complementary Results from Concurrent Work⁸

Non-overlapping training data from the same distribution: The same model trained from two exclusive subsets of the same training dataset

⁸Z Kadkhodaie, et al.'24 "Generalization in diffusion models arises from geometry-adaptive harmonic representation." (ICLR'24 Outstanding Paper Award) and

Reproducibility Manifest in Two Different Regimes

Reproducibility (RP) Score:

$$\mathsf{RP} \; \mathsf{Score} \; := \; \mathbb{P} \left(\mathcal{M}_{\mathsf{SSCD}}(oldsymbol{x}_1, oldsymbol{x}_2) > 0.6
ight).$$

Higher implies better reproducibility between two diffusion models.

December 21, 2024

∃ →

Reproducibility Manifests in Two Different Regimes

Generalization (GL) score is defined to

measure the difference between a newly generated sample x and the whole training dataset $\{y_i\}_{i=1}^N$.

Reproducibility Manifests in Two Different Regimes

Generalization (GL) score (or perhaps memorization score?)

$$\mathsf{GL} \,\, \mathsf{Score} \,\, := \,\, 1 - \mathbb{P}\left(\max_{i \in [N]} \left[\mathcal{M}_{\mathsf{SSCD}}(\boldsymbol{x}, \boldsymbol{y}_i) \right] > 0.6 \right),$$

is also a probability measure. Higher implies better generalizability.

From "Memorization" to "Generalization"⁹

Reproducibility manifests in **two distinct regimes**, with a **strong** correlation with model's **generalizability**.

イロト イポト イヨト イヨト

2

Why Does Reproducibility Manifest in Distinct Regimes?

• • = • • = •
Why Does Reproducibility Manifest in Distinct Regimes?

How well does diffusion model s_θ approximate the score function ∇_x log p_t(x) ?

Why Does Reproducibility Manifest in Distinct Regimes?

- How well does diffusion model s_θ approximate the score function ∇_x log p_t(x) ?
- What distribution p(x₀) are we learning the score function for? (depending on training data size vs. model capacity)

Learning Empirical Distribution in Memorization Regime

Data Assumption: Given a training dataset $S = \{y_i\}_{i=1}^N$ of *N*-samples, the empirical distribution $p_{emp}(x)$ of S can be characterized by the **multi-delta distribution**:

$$p_{\mathsf{emp}}(\boldsymbol{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta(\boldsymbol{x} - \boldsymbol{y}_i).$$

Interpolation/Extrapolation of True Data Distribution

The curse of dimensionality: for image dataset (e.g., CelebA, Cifar),

$$p_{\mathsf{emp}}({m{x}}) = rac{1}{N} \sum_{i=1}^N \delta({m{x}} - {m{y}}_i) \ pprox \ p_{\mathsf{data}}({m{x}}),$$

to be ε -close, we could need at least $N \ge (L/\varepsilon)^d$ samples!¹⁰

¹⁰We can draw this conclusion by a simple covering argument, the image dimension $d = 32 \times 32 = 1024$ for Cifar. See also recent work by Li et al., 2024. The set of the

Interpolation/Extrapolation of True Data Distribution

The curse of dimensionality: for image dataset (e.g., CelebA, Cifar),

$$p_{\mathsf{emp}}({\boldsymbol{x}}) = \frac{1}{N} \sum_{i=1}^N \delta({\boldsymbol{x}} - {\boldsymbol{y}}_i) \ \approx \ p_{\mathsf{data}}({\boldsymbol{x}}),$$

where we need an **extremely large** number of samples $N \ge (L/\varepsilon)^d$!

Intrinsic Low-Dimensionality of the Model

Evaluating the **rank ratio** of the Jacobian $J_{\theta,t}(x_t) = \nabla_{x_t} x_{\theta}(x_t)$.

Intrinsic Low-Dimensionality of the Model

• Denoising autoencoder (DAE) formulation:

$$\min_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) := \sum_{i=1}^{N} \int_{0}^{1} \lambda_{t} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{n})} \left[\left\| \boldsymbol{x}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}, t) - \boldsymbol{x}^{(i)} \right\|^{2} \right] \mathrm{d}t$$

Intrinsic Low-Dimensionality of the Model

• Denoising autoencoder (DAE) formulation:

$$\min_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) := \sum_{i=1}^{N} \int_{0}^{1} \lambda_{t} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{n})} \left[\left\| \boldsymbol{x}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}, t) - \boldsymbol{x}^{(i)} \right\|^{2} \right] \mathrm{d}t$$

• Tweedie's formula, $\boldsymbol{x}_t = \alpha_t \boldsymbol{x}^{(i)} + \beta_t \boldsymbol{\epsilon}$:

 $\begin{array}{c} \boldsymbol{x}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t) \\ \textbf{neural networks, like U-Net} \end{array} \approx \begin{bmatrix} \mathbb{E}[\boldsymbol{x}_{0}|\boldsymbol{x}_{t}] \end{bmatrix} = (\boldsymbol{x}_{t} + \beta_{t}^{2} \nabla_{\boldsymbol{x}} \log p_{t}(\boldsymbol{x})] / \alpha_{t}. \\ \hline \textbf{posterior mean} \end{array}$

The Intrinsic Low-Dimensionality of Data¹¹

The low-dim of model reflects the intrinsic dimension of our data:

¹¹Image credit: P. Pope et al., ICLR'2021.

Qing Qu (EECS, University of Michigan) The Generalizability in Diffusion Models

The Intrinsic Low-Dimensionality of Data¹¹

The low-dim of model reflects the intrinsic dimension of our data:

Qing Qu (EECS, University of Michigan) The Generalizability in Diffusion Models

36 / 71

¹¹Image credit: P. Pope et al., ICLR'2021.

The Intrinsic Low-Dimensionality of Data¹¹

The low-dim of model reflects the intrinsic dimension of our data:

The blessing of dimensionality: the intrinsic dimension r of image data is much lower than the ambient dimension d, i.e., $r \ll d$.

¹¹Image credit: P. Pope et al., ICLR'2021.

Study Generalization under Low-Dimensional Models¹²

Data Assumption: mixture of low-rank Gaussian (MoLRG)

$$p_{\mathsf{data}}(\boldsymbol{x}) = rac{1}{K} \sum_{i \in [K]} \mathcal{N}\left(\boldsymbol{x}; \boldsymbol{0}, \boldsymbol{\Sigma}_{i}
ight) \text{ with } \boldsymbol{\Sigma}_{i} = \boldsymbol{U}_{i} \boldsymbol{U}_{i}^{ op},$$

where K is the number of clusters, and $U_i \in \mathbb{R}^{d \times r}$ is the low-rank basis for the *i*th cluster with $r \ll d$, with $U_i \perp U_j (i \neq j)$.

¹²Chen et al. Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data. ICML'23.

Qing Qu (EECS, University of Michigan) The Generalizability in Diffusion Models

37 / 71

Study Generalization under Low-Dimensional Models¹³

Data Assumption: mixture of low-rank Gaussian (MoLRG)

$$p_{\mathsf{data}}(\boldsymbol{x}) = rac{1}{K} \sum_{i \in [K]} \mathcal{N}\left(\boldsymbol{x}; \boldsymbol{0}, \boldsymbol{\Sigma}_{i}
ight)$$
 with $\boldsymbol{\Sigma}_{i} = \boldsymbol{U}_{i} \boldsymbol{U}_{i}^{ op},$

where K is the number of clusters, and $U_i \in \mathbb{R}^{d \times r}$ is the low-rank basis for the *i*th cluster with $r \ll d$, with $U_i \perp U_j (i \neq j)$.

Lemma. Suppose that $p_{\text{data}} \sim \text{MoLRG}$. For all t > 0,

$$\mathbb{E}\left[\boldsymbol{x}_{0}|\boldsymbol{x}_{t}\right] = \frac{\alpha_{t}}{\alpha_{t}^{2} + \beta_{t}^{2}} \sum_{k=1}^{K} w_{k} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star^{\top}} \boldsymbol{x}_{t},$$

where $w_k = \frac{\pi_k \exp\left(\phi_t \| \boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t \|^2\right)}{\sum_{k=1}^K \pi_k \exp\left(\phi_t \| \boldsymbol{U}_k^{\star \top} \boldsymbol{x}_t \|^2\right)}$ and $\phi_t := \alpha_t^2 / (2\beta_t^2(\alpha_t^2 + \beta_t^2)).$

 13 As shown by Wang et al.'23, the learned data distribution can be approxe by MoG_{\odot}

38 / 71

A Simple Case Study: Single Low-rank Gaussian K = 1

Theorem (Equivalence to PCA)

Suppose that

- The distribution $p(\boldsymbol{x}_0) = \mathcal{N}\left(\boldsymbol{x}_0; \boldsymbol{0}, \boldsymbol{U}_g \boldsymbol{U}_g^{\top}\right)$ with $\boldsymbol{U}_g \in \mathcal{O}^{d \times r}$;
- For each $t \in [0,1]$, we parameterize the denoiser $oldsymbol{x}_{oldsymbol{U}}(oldsymbol{x}_t,t)$ as

$$\boldsymbol{x}_{\boldsymbol{U}}(\boldsymbol{x}_t,t) = rac{lpha_t}{lpha_t^2 + eta_t^2} \cdot \boldsymbol{U} \boldsymbol{U}^{ op} \boldsymbol{x}_t$$

Let $m{Y} = egin{bmatrix} m{y}_1 & \cdots & m{y}_N \end{bmatrix}$ be the training data matrix. Then we have

A Simple Case Study: Single Low-rank Gaussian K = 1

Theorem (Equivalence to PCA)

Suppose that

- The distribution $p(\boldsymbol{x}_0) = \mathcal{N}\left(\boldsymbol{x}_0; \boldsymbol{0}, \boldsymbol{U}_g \boldsymbol{U}_g^{\top}\right)$ with $\boldsymbol{U}_g \in \mathcal{O}^{d imes r}$;
- For each $t \in [0,1]$, we parameterize the denoiser $oldsymbol{x}_{oldsymbol{U}}(oldsymbol{x}_t,t)$ as

$$\boldsymbol{x}_{\boldsymbol{U}}(\boldsymbol{x}_t,t) = rac{lpha_t}{lpha_t^2 + eta_t^2} \cdot \boldsymbol{U} \boldsymbol{U}^{ op} \boldsymbol{x}_t$$

Let $\mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_N \end{bmatrix}$ be the training data matrix. Then we have • The training loss can be reduced to the loss of the **PCA problem**: $\max_{\mathbf{U}} \|\mathbf{U}^{\top}\mathbf{Y}\|_F^2$, s.t. $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_r$.

A Simple Case Study: Single Low-rank Gaussian K = 1

Theorem (Equivalence to PCA)

Suppose that

- The distribution $p(\boldsymbol{x}_0) = \mathcal{N}\left(\boldsymbol{x}_0; \boldsymbol{0}, \boldsymbol{U}_g \boldsymbol{U}_g^{\top}\right)$ with $\boldsymbol{U}_g \in \mathcal{O}^{d imes r}$;
- For each $t \in [0,1]$, we parameterize the denoiser $oldsymbol{x}_{oldsymbol{U}}(oldsymbol{x}_t,t)$ as

$$\boldsymbol{x}_{\boldsymbol{U}}(\boldsymbol{x}_t,t) = rac{lpha_t}{lpha_t^2 + eta_t^2} \cdot \boldsymbol{U} \boldsymbol{U}^{ op} \boldsymbol{x}_t$$

Let $m{Y} = egin{bmatrix} m{y}_1 & \cdots & m{y}_N \end{bmatrix}$ be the training data matrix. Then we have

• The training loss can be reduced to the loss of the PCA problem: $\max_{\boldsymbol{U}} \|\boldsymbol{U}^{\top}\boldsymbol{Y}\|_{F}^{2}, \quad s.t. \quad \boldsymbol{U}^{\top}\boldsymbol{U} = \boldsymbol{I}_{r}.$

• Thus, it holds for the global solution U_{\star} w.h.p. that (i) If $N \ge r$, we have $\|U_{\star}U_{\star}^{\top} - U_{g}U_{g}^{\top}\|_{F} < \delta$; (ii) If N < r, we have $\|U_{\star}U_{\star}^{\top} - U_{g}U_{g}^{\top}\|_{F} \ge \sqrt{r-N} - \delta$.

Study of Multiple Low-Dim Subspaces K > 1

Theorem (Equivalence to Subspace Clustering)

Suppose that

- Suppose that $p(\boldsymbol{x}_0)$ is MoLRG with K > 1;
- If we parameterize the DAE network

$$\boldsymbol{x}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t) = rac{lpha_t}{lpha_t^2 + eta_t^2} \sum_{k=1}^K w_k(\boldsymbol{\theta}; \boldsymbol{x}_t) \boldsymbol{U}_k \boldsymbol{U}_k^\top \boldsymbol{x}_t.$$

イロト イヨト イヨト ・

Study of Multiple Low-Dim Subspaces K > 1

Theorem (Equivalence to Subspace Clustering)

Suppose that

- Suppose that $p(\boldsymbol{x}_0)$ is MoLRG with K>1;
- If we parameterize the DAE network

$$\boldsymbol{x}_{\boldsymbol{ heta}}(\boldsymbol{x}_t,t) = rac{lpha_t}{lpha_t^2 + eta_t^2} \sum_{k=1}^K w_k(\boldsymbol{ heta}; \boldsymbol{x}_t) \boldsymbol{U}_k \boldsymbol{U}_k^\top \boldsymbol{x}_t.$$

Then the DAE training problem is equivalent to subspace clustering

$$\max_{\boldsymbol{\theta}} \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in C_k(\boldsymbol{\theta})} \|\boldsymbol{U}_k^{\top} \boldsymbol{x}^{(i)}\|^2 \quad \text{s.t.} \quad \left[\boldsymbol{U}_1, \dots, \boldsymbol{U}_K\right] \in \mathcal{O}^{n \times dK},$$

where $C_k(\boldsymbol{\theta}) := \left\{ i \in [N] : \| \boldsymbol{U}_k^\top \boldsymbol{x}^{(i)} \| \ge \| \boldsymbol{U}_l^\top \boldsymbol{x}^{(i)} \|, \; \forall l \neq k \right\}$ for $k \in [K]$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Phase Transitions on MoLRG with Parameterized Networks

Phase Transitions on MoLRG with Parameterized Networks

Phase Transition from Memorization to Generalization

Phase transition for diffusion models trained with U-Net.

Semantic Meanings of the Low-Dimensional Basis

Semantic meanings of the eigenvectors U of the Jacobian $J_{\theta}(x_t, t)$.

43 / 71

Outline

イロト イヨト イヨト イヨト

э

LOw-rank COntrollable Image Editing (LOCO Edit)

Mouth shape

Hair curvature

Hair amount

Eye shape

→

(a) Precise and Localized

LOw-rank COntrollable Image Editing (LOCO Edit)

Mouth shape

Hair curvature

Hair amount

Eye shape

(a) Precise and Localized

Original ----- Transfer (other)

→

Original (t = 0.5) ----- Transfer (t = 0.8)

(b) Homogeneity & Transferability

LOw-rank COntrollable Image Editing (LOCO Edit)

Mouth shape

Hair curvature

Hair amount

Eye shape

(a) Precise and Localized

Original ----- Transfer (other)

Original (t = 0.5) ------ Transfer (t = 0.8)

(b) Homogeneity & Transferability

real - eye size + smile

+ smile – hair color

Open mouth +

Close mouth

(d) Linearity

(c) Composability & Disentanglement

real

45 / 71

Editing in Text-to-image Diffusion Models

Stable Diffusion

DeepFloyd

Latent Consistency

Remove beard

(a) Unsupervised T2I Edit

< 🗇 🕨

Side view

(b) Text-supervised T2I Edit

Figure: T-LOCO Edit on T2I diffusion models.

Consider a unconditional diffusion model s_{θ} :

• Posterior mean predictor (PMP) for the image x_0 :

$$\boldsymbol{f}_{\boldsymbol{\theta},t}(\boldsymbol{x}_t;t) \coloneqq \frac{\boldsymbol{x}_t + (1 - \alpha_t) \, \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)}{\sqrt{\alpha_t}} \approx \mathbb{E}[\boldsymbol{x}_0 | \boldsymbol{x}_t],$$

→

э

Consider a unconditional diffusion model s_{θ} :

• Posterior mean predictor (PMP) for the image x_0 :

$$oldsymbol{f}_{oldsymbol{ heta},t}(oldsymbol{x}_t;t)\coloneqq rac{oldsymbol{x}_t+(1-lpha_t)\,oldsymbol{s}_{oldsymbol{ heta}}(oldsymbol{x}_t,t)}{\sqrt{lpha_t}}pprox \mathbb{E}[oldsymbol{x}_0|oldsymbol{x}_t],$$

• The 1st order Taylor expansion of $f_{\theta,t}(x_t + \lambda \Delta x)$ at x_t :

$$oldsymbol{l}_{oldsymbol{ heta}}(oldsymbol{x}_t;\lambda\Deltaoldsymbol{x}) \ := \ oldsymbol{f}_{oldsymbol{ heta},t}(oldsymbol{x}_t)+\lambdaoldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t)\cdot\Deltaoldsymbol{x},$$

where $J_{\theta,t}(x_t) = \nabla_{x_t} f_{\theta,t}(x_t)$ is the Jacobian of $f_{\theta,t}(x_t)$

47 / 71

Two key properties:

- Local linearity of the PMP $f_{\theta,t}(x_t) \approx l_{\theta}(x_t; \lambda \Delta x)$.
- Low-rankness of the Jacobian $m{J}_{m{ heta},t}(m{x}_t) = m{U} m{\Sigma} m{V}^ op = \sum_{i=1}^r \sigma_i m{u}_i m{v}_i^ op;$

$$oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^ op$$

• Local linearity of the PMP with $\Delta x = v_i$, one column of V:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_{m{ heta},t}(m{x}_t+\lambdam{v}_i)&pprox m{f}_{m{ heta},t}(m{x}_t)+\lambdam{J}_{m{ heta},t}(m{x}_t)m{v}_i &\ &=egin{aligned} eta_{m{ heta},t}(m{x}_t)+\lambda\sum_{j=1}^r\sigma_jm{u}_jm{v}_j^{ op}m{v}_i &\ &=m{\hat{x}}_{0,t}+\lambda\sigma_im{u}_i. \end{aligned}$$

Image: A image: A

- ∢ 🗗 ▶

3

$$oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^ op$$

• Local linearity of the PMP with $\Delta x = v_i$, one column of V:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_{m{ heta},t}(m{x}_t+\lambdam{v}_i)&pprox m{f}_{m{ heta},t}(m{x}_t)+\lambdam{J}_{m{ heta},t}(m{x}_t)m{v}_i &\ &=egin{aligned} eta_{m{ heta},t}(m{x}_t)+\lambda\sum_{j=1}^r\sigma_jm{u}_jm{v}_j^{ op}m{v}_i &\ &=m{\hat{x}}_{0,t}+\lambda\sigma_jm{u}_i. \end{aligned}$$

- Low rankness of the Jacobian $J_{\theta,t}(\boldsymbol{x}_t)$ (e.g., t = 0.7):
 - V can be computed efficiently via generalized power method!

Overview of LOCO Edit

• Illustration of LOCO Edit for unconditional diffusion models:

< 47 ▶

< ∃⇒

э

Overview of LOCO Edit

• Illustration of LOCO Edit for unconditional diffusion models:

Visualizing editing directions identified via LOCO Edit:

→ ∃ →

- (日)

Visual Comparison with Existing Methods

Add red lipstick

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Shallow Diffuse: Robust and Invisible Watermarking

< □ > < □ > < □ > < □ > < □ > < □ >
Shallow Diffuse: Robust and Invisible Watermarking

・ロト ・ 同ト ・ ヨト ・ ヨト

Shallow Diffuse: Robust and Invisible Watermarking

Key idea: Inject the watermark Δx in the Null Space of $J_{\theta,t}(x_t)$:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

<日

<</p>

Shallow Diffuse: Robust and Invisible Watermarking

Method	CLIP-Score ↑	$\mathrm{FID}\downarrow$	Watermarking Robustness (AUC ↑/TPR@1%FPR↑)						
			Clean	JPEG	G.Blur	G.Noise	Color Jitter	Average	
Non-diffusion Method									
DwtDct	0.3298	25.73	0.97/0.85	0.64/0.00	0.78/0.00	0.44/0.02	0.53/0.09	0.60/0.03	
DwtDctSvd	0.3291	26.00	1.00/1.00	0.80/0.08	0.99/0.80	0.97/0.84	0.50/0.09	0.82/0.45	
RivaGAN	0.3252	24.60	1.00/0.99	0.98/0.76	0.97/0.72	1.00/0.99	0.96/0.77	0.98/0.81	
Diffusion Method									
Stable Diffusion w/o WM	0.3286	25.56	-	-	-	-	-	-	
Stable Signature	0.3622	30.86	1.00/1.00	0.99/0.76	0.57/0.00	0.71/0.14	0.96/0.87	0.81/0.46	
Tree-Ring Watermarks	0.3310	25.82	1.00/1.00	0.99/0.97	0.98/0.98	0.94/0.50	0.96/0.67	0.97/0.80	
RingID	0.3285	27.13	1.00/1.00	1.00/1.00	1.00/1.00	1.00/0.99	0.99/0.98	1.00/0.99	
Gaussian Shading	0.3631	26.17	1.00/1.00	1.00/1.00	1.00/1.00	1.00/1.00	1.00/1.00	1.00/1.00	
Shallow Diffuse (ours)	0.3285	25.58	1.00/1.00	1.00/1.00	1.00/1.00	1.00/1.00	1.00/1.00	1.00/1.00	

Qing Qu (EECS, University of Michigan) The Generalizability in Diffusion Models

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Conclusion

A D N A B N A B N A B N

э

Conclusion

- Diffusion models exhibit **unique reproducibility** which manifests in two distinct data regimes: **memorization vs.** generalization.
- Diffusion models can learn **low-dimensional data distribution** without the curse of dimensionality.
- Diffusion models can be controlled through manipulating the low-dimensional **semantic subspaces**.

(日) (四) (문) (문) (문)

Conclusion

- Diffusion models exhibit **unique reproducibility** which manifests in two distinct data regimes: **memorization vs.** generalization.
- Diffusion models can learn **low-dimensional data distribution** without the curse of dimensionality.
- Diffusion models can be controlled through manipulating the low-dimensional **semantic subspaces**.

- Theory: fundamental questions on generalization.
- Practice: many potential applications of our findings:
 - More efficient training;
 - Interpretable & controllable data generation;
 - Model safety, privacy, and robustness;

Major References

- H. Zhang*, J. Zhou*, Y. Lu, M. Guo, P. Wang, L. Shen, and Q. Qu. The Emergence of Reproducibility and Consistency in Diffusion Models. ICML, 2024. (NeurIPS'23 Workshop on Diffusion Models, Best Paper Award)
- P. Wang*, H. Zhang*, Z. Zhang, S. Chen, Y. Ma, and Q. Qu. Diffusion Model Learns Low-Dimensional Distributions via Subspace Clustering. Arxiv Preprint arXiv:2409.02426, 2024.
- 3 S. Chen*, H. Zhang*, M. Guo, Y. Lu, P. Wang, and Q. Qu. Exploring Low-Dimensional Subspaces in Diffusion Models for Controllable Image Editing. NeurIPS, 2024.

https://chicychen.github.io/LOCO/index.html

- 4 X. Li, Y. Dai, Q. Qu. Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure. NeurIPS, 2024.
- W. Li, H. Zhang, Q. Qu. Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models. Arxiv Preprint arXiv:2410.21088, 2024.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Acknowledgement

Huijie Zhang

Peng Wang

Siyi Chen

Zekai Zhang

Xiang Li

Minzhe Guo

Yifu Lu

Jinfan Zhou

Liyue Shen

Yi Ma

Acknowledgement

Thank You! Questions?

December 21, 2024

< □ > < □ > < □ > < □ > < □ > < □ >

Reproducibility of Class Conditional Diffusion Models

Figure: Tested on ImageNet-1k dataset for pre-trained diffusion models.

Model Capacity vs. Training Data Size

M: Memorization regime, T: Transition regime, G: Generalization regime +

	2^6 (0.2M)	2^7 (0.4M)	2^8 (0.8M)	2^9 (1.6M)	2^10 (3.1M)	2^11 (6.3M)	2^12 (12.6M)	2^13 (25.2M)	2^14 (50.3M)	2^15 (100.6M)
UNet64 (26.7M)	М	Μ	Μ	М	Μ	Т	Т	G	G	G
UNet128 (106M)	М	М	Μ	М	Μ	Μ	Т	Т	G	O
UNet256 (426M)	м	Μ	Μ	М	Μ	Μ	Т	Т	G	O

Qing Qu (EECS, University of Michigan)

Reproducibility of Text2Image Stable Diffusion Models

(a) Visualization of stable diffusion with same prompts. Each column has the same initial noise.

(b) Reproducibility score

Only V1-3 and V1-4 have exactly the same training dataset. Details of their relationships are on StableDiffusion's Github Page.

Conditional Diffusion Models

- Enable conditional generation, e.g. class condition, text-to-image, image-to-image translation [2].
- Change the denoiser from ε_θ(x_t, t) to ε_θ(x_t, t, c) for c ∈ C. The set C could be the class label, text, image, and so on.
- Utilize $\epsilon_{\theta}(\boldsymbol{x}_t, t, c)$ for both training and sampling.

Reproducibility of Class Conditional Diffusion Models

(a) Visualization

(b) Conditional diffusion models (c) Conditional and unconditional diffusion models

$$\begin{split} \mathsf{RP}_{cond} \ \mathsf{Score} &:= \mathbb{P}\left(\mathcal{M}_{\mathsf{SSCD}}(\boldsymbol{x}_1^c, \boldsymbol{x}_2^c) > 0.6 \mid c \in \mathcal{C}\right), \ (\boldsymbol{x}_1^c, \boldsymbol{x}_2^c) \ \text{are generated by two} \\ \text{conditional models from the same initial noise and conditioned on the class} \ c \in \mathcal{C} \\ \mathsf{RP}_{between} \ \mathsf{Score} &:= \mathbb{P}\left(\max_{c \in \mathcal{C}} \left[\mathcal{M}_{\mathsf{SSCD}}(\boldsymbol{x}_1, \boldsymbol{x}_2^c)\right] > 0.6\right), \ \text{for an unconditional generation} \ \boldsymbol{x}_1 \ \text{and conditional generation} \ \boldsymbol{x}_2^c \ \text{starting from the same noise.} \end{split}$$

Model reproducibility of conditional models persists and is linked with unconditional counterparts.

Diffusion Models for Solving Inverse Problems

- Inverse problem: reconstruct an unknown signal u from the measurements z of the form $z = \mathcal{A}(u) + \eta$, where \mathcal{A} denotes some (given) sensing operator and η is the noise.
- Sampling: Enable conditional generation with only pre-trained unconditional denoiser $\epsilon_{\theta}(\boldsymbol{x}_t, t)$: $\boldsymbol{x}_t, \hat{\boldsymbol{x}}_0 \leftarrow \text{DeterministicSampler}(\epsilon_{\theta}, \boldsymbol{x}_{t+1}, t+1,)$ $\boldsymbol{x}_t \leftarrow \boldsymbol{x}_t - \xi_t \nabla_{\boldsymbol{x}_t} || \boldsymbol{z} - \mathcal{A}(\hat{\boldsymbol{x}}_0) ||_2^2$
- Diffusion Posterior Sampling (DPS) [1]

э

Reproducibility of diffusion model for inverse problem

(b) Reproducibility Score

Model reproducibility largely holds only within the same type of network architectures.

December 21, 2024 67 / 71

Fine-tuning Diffusion Models

- For pre-trained large diffusion model (e.g. stable diffusion), we often fine-tune only a small portion of the parameters (e.g. attention layer, text embedding) on few-shot images.
- Obtain incredible generalizability, e.g. DreamBooth [3].

Input images

in the Acropolis

in a doghouse

in a bucket

getting a haircut

Reproducibility of diffusion model fine-tuning

Pretrained on CIFAR-100, fine-tuning on CIFAR-10. Only fine-tuning the attention layer.

Partial fine-tuning reduces reproducibility but improves generalizability in "memorization regime".

Study Generalization under Low-Dimensional Models We learn s_{θ} with U-Nets. We set C = 2 and d = 48, varying N and r.

We measure the score distance and generalization as¹⁴

$$\begin{split} \mathcal{L}_{\mathsf{score}} &:= \ \mathbb{E}_{t \sim \mathcal{U}(0,1), \boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)} \big[\| \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t) - \boldsymbol{s}_{\mathsf{MoLRG}}(\boldsymbol{x}_t,t) \|_2 \big], \\ \boldsymbol{x}_t \sim p_t(\boldsymbol{x}_t | \boldsymbol{x}_0) \\ \end{split}$$

$$\begin{split} \mathcal{L}_{\mathsf{generalize}} &\coloneqq \ \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \beta_t \boldsymbol{I})} \big[\min_{i \in [N]} || \mathcal{F}_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}) - \boldsymbol{y}_i ||_2 \big]. \end{split}$$

¹⁴Here, $\mathcal{F}_{\theta}(\epsilon)$ is the mapping from the noise space \mathcal{E} to the image space \mathcal{I} induced by the learned score s_{θ} and ODE sampler.

Quantitative results of LOCO Edit

Method Name	Pullback	$\partial oldsymbol{\epsilon}_t / \partial oldsymbol{x}_t$	NoiseCLR	Asyrp	BlendedDiffusion	LOCO (Ours)
Local Edit Success Rate↑	0.32	0.37	0.32	0.47	0.55	0.80
LPIPS↓	0.16	0.13	0.14	0.22	0.03	0.08
SSIM↑	0.60	0.66	0.68	0.68	0.94	0.71
Transfer Success Rate↑	0.14	0.24	0.66	0.58	Can't Transfer	0.91
Transfer Edit Time↓	4s	2s	5s	3s	Can't Transfer	2s
#Images for Learning	1	1	100	100	1	1
Learning Time↓	8s	44s	1 day	475s	120s	79s
One-step Edit?	✓	✓	×	×	×	1
No Additional Supervision?	✓	✓	1	×	×	1
Theoretically Grounded?	×	X	×	×	×	1
Localized Edit?	×	×	×	×	 Image: A second s	1

Table: **Comparisons with existing methods.** Our LOCO Edit excels in localized editing, transferability and efficiency, with other intriguing properties such as one-step edit, supervision-free, and theoretically grounded.

H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye.

Diffusion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10684–10695, 2022.
 - N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman.
 - Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.

- 4 回 ト 4 三 ト 4 三 ト

71 / 71

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22500–22510, 2023.