menu MENU
Qing Qu
1301 Beal AvenueAnn Arbor, MI 48109-2122

Please also see my Google Scholar Profile for updated publication

Preprints

Sheng Liu, Zhihui Zhu, Qing Qu, Chong You (2022). Robust Training under Label Noise by Over-parameterizationIn Submission.
Preprint – PDF –  BibTex

Jinxin Zhou (equal), Xiao Li (equal), Tianyu Ding, Chong You, Qing Qu (equal), Zhihui Zhu (equal) (2022). On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained FeaturesIn Submission.
Preprint – PDF –  BibTex

Lijun Ding (equal), Liwei Jiang (equal), Yudong Chen, Qing Qu, Zhihui Zhu (2021). Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact RecoveryIn Submission.
Preprint – PDF –  BibTex

Zhihui Zhu (equal), Tianyu Ding (equal), Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, Qing Qu (2021). A Geometric Analysis of Neural Collapse with Unconstrained FeaturesIn Submission.
Preprint – PDF –  Slides –  BibTex

Sheng Liu (equal), Xiao Li (equal), Yuexiang Zhai, Chong You, Zhihui Zhu, Carlos Fernandez-Granda, Qing Qu (2021). Convolutional Normalization: Improving Deep Convolutional Network Robustness and TrainingIn Submission.
Preprint – PDF –  BibTex

Yuqian Zhang, Qing Qu, John Wright (2020). From Symmetry to Geometry: Tractable Nonconvex ProblemsIn Submission to Proceedings of IEEE.
Preprint – PDF –  SlidesBibTex

Qing Qu (equal), Zhihui Zhu (equal), Xiao Li, Manolis C. Tsakiris, John Wright, Rene Vidal (2020). Finding the Sparsest Vectors in a Subspace: Theory, Algorithms, and Applications. In Submission.
Preprint – PDF – SlidesBibTex

Qing Qu, Yuexiang Zhai, Xiao Li, Yuqian Zhang, Zhihui Zhu (2019). Analysis of the Optimization Landscapes for Overcomplete Representation LearningIn Submission. (ICLR’20oral, top 1.9%).
Preprint – PDF – SlidesBibTex

Yenson Lau (equal), Qing Qu (equal), Han-wen Kuo, Pengcheng Zhou, Yuqian Zhang, John Wright (2019). Short-and-Sparse Deconvolution – A Geometric ApproachIn Submission. (ICLR’20).
Preprint – PDF – Code – Poster – SlidesWebsite – BibTex

Journal Articles

Xiao Li (equal), Shixiang Chen (equal), Zengde Deng, Qing Qu, Zhihui Zhu, Anthony Man Cho So (2021). Weakly Convex Optimization over Stiefel Manifold Using Riemannian Subgradient-Type MethodsAccepted at SIAM Journal on Optimization.
Preprint – PDF – CodeBibTex

Qing Qu, Xiao Li, Zhihui Zhu (2019). Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient DescentSIAM Journal on Imaging Science, 13(3): 1630–1652, 2020. (NeurIPS’19spotlight, top 3%).
Preprint – PDF – Code – Poster – SlidesBibTex

Qing Qu, Yuqian Zhang, Yonina C. Eldar, John Wright (2019). Convolutional Phase Retrieval via Gradient DescentIEEE Trans. on Information Theory, 66(3):1785–1821, Mar. 2020. (NeurIPS’17).
Preprint – PDF – Code – Poster – SlidesBibTex

Ju Sun, Qing Qu, John Wright (2018). A Geometric Analysis of Phase RetrievalFoundations of Computational Mathematics, 18(5):1131–1198, 2018. (ISIT’16).
Preprint – PDF – Code – SlidesBibTex

Ju Sun, Qing Qu, John Wright (2017). Complete Dictionary Recovery over the Sphere I: Overview and the Geometric PictureIEEE Trans. on Information Theory, 63(2): 853 – 884, Feb. 2017. (ICML’15).
Preprint – PDF – Code – PosterBibTex

Ju Sun, Qing Qu, John Wright (2017). Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian Trust-region MethodIEEE Trans. on Information Theory, 63(2): 853 – 884, Feb. 2017.
Preprint – PDF – Code – PosterBibTex

Qing Qu, Ju Sun, John Wright (2016). Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating DirectionsIEEE Trans. on Information Theory, 62(10): 5855 – 5880, Oct. 2016 (NeurIPS’14).
Preprint – PDF – Code – Poster – SlidesBibTex

Qing Qu, Nasser M. Nasrabadi, Trac D. Tran (2015). Subspace Vertex Pursuit: A Fast and Robust Near-Separable Nonnegative Matrix Factorization Method for Hyperspectral UnmixingIEEE Journal of Selected Topics in Signal Processing, 9(6): 1142 – 1155, Sept. 2015.
PDF – PosterBibTex

Qing Qu, Nasser M. Nasrabadi, Trac D. Tran (2014). Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank RepresentationIEEE Transactions on Geoscience and Remote Sensing, 52(7): 4404 – 4423, Jul. 2014.
PDF – Code – Poster – SlidesBibTex

Xiaoxia Sun, Qing Qu, Nasser M. Nasrabadi, Trac D. Tran (2014). Structured Priors for Sparse-Representation-Based Hyperspectral Image ClassificationIEEE Geoscience and Remote Sensing Letters, 11(7): 1235 – 1239, Jul. 2014.
Preprint – PDFBibTex

Jian Jin, Qing Qu, Yuantao Gu (2013). Robust Zero-point Attraction Least Mean Square Algorithm on Near Sparse System IdentificationIET Signal Processing, 7(3): 210 – 218, May 2013.
Preprint – PDFBibTex

Conference Papers

Zhihui Zhu (equal), Tianyu Ding (equal), Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, Qing Qu (2021). A Geometric Analysis of Neural Collapse with Unconstrained Features. Neural Information Processing Systems (NeurIPS’21), 2021. (spotlight, top 3%)

Sheng Liu (equal), Xiao Li (equal), Yuexiang Zhai, Chong You, Zhihui Zhu, Carlos Fernandez-Granda, Qing Qu (2021). Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training. Neural Information Processing Systems (NeurIPS’21), 2021.

Lijun Ding (equal), Liwei Jiang (equal), Yudong Chen, Qing Qu, Zhihui Zhu (2021). Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact RecoveryNeural Information Processing Systems (NeurIPS’21), 2021.

Chong You (equal), Zhihui Zhu (equal), Qing Qu, Yi Ma (2020). Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterizationNeural Information Processing Systems (NeurIPS’20), 2020. (spotlight, top 4%)

Qing Qu, Yuexiang Zhai, Xiao Li, Yuqian Zhang, and Zhihui Zhu (2020). Geometric Analysis of Nonconvex Optimization Landscapes for Overcomplete LearningInternational Conference on Learning Representations (ICLR’20), 2020. (oral, top 1.9%)

Yenson Lau (equal), Qing Qu (equal), Han-wen Kuo, Pengcheng Zhou, Yuqian Zhang, and John Wright (2020). Short and Sparse Deconvolution — A Geometric ApproachInternational Conference on Learning Representations (ICLR’20), 2020.

Qing Qu, Xiao Li, and Zhihui Zhu (2019). A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind DeconvolutionNeural Information Processing Systems (NeurIPS’19), 2019. (spotlight, top 3%)

Qing Qu, Xiao Li, and Zhihui Zhu (2019). Exact and Efficient Multi-Channel Sparse Blind Deconvolution — A Nonconvex ApproachAsilomar Conference on Signals, Systems, and Computers (ACSSC’19), 2019.

Qing Qu, Yuqian Zhang, Yonina Eldar, and John Wright (2017). Convolutional Phase RetrievalNeural Information Processing Systems (NeurIPS’17), 2017.

Ju Sun, Qing Qu, and John Wright (2016). A Geometric Analysis of Phase RetrievalIEEE International Symposium on Information Theory (ISIT’16), 2016.

Ju Sun, Qing Qu, and John Wright (2015). Complete Dictionary Recovery using Nonconvex OptimizationInternational Conference on Machine Learning (ICML’15), 2015.

Ju Sun, Qing Qu, and John Wright (2015). Complete Dictionary Recovery over the SphereInternational Conference on Sampling Theory and Applications (SampTA’15), 2015.

Qing Qu, Ju Sun, and John Wright (2014). Finding a Sparse Vector in a Subspace: Linear Sparsity using Alternating DirectionsNeural Information Processing Systems (NeurIPS’14), 2014.

Qing Qu, Xiaoxia Sun, Nasser M. Nasrabadi, and Trac D. Tran (2014). Subspace Vertex Pursuit for Separable Non-negative Matrix Factorization in Hyperspectral UnmixingIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’14), 2014.

Qing Qu, Nasser M. Nasrabadi, and Trac D. Tran (2013). Hyperspectral Abundance Estimation for the Generalized Bilinear Model with Joint Sparsity ConstraintIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’13), 2013.

Workshop Papers

Yenson Lau (equal), Qing Qu (equal), Han-wen Kuo, Pengcheng Zhou, Yuqian Zhang, and John Wright (2019). Short and Sparse Deconvolution — A Geometric ApproachIn Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’19), 2019.

Qing Qu, Yuqian Zhang, Yonina Eldar, and John Wright (2017). Convolutional Phase Retrieval via Gradient DescentIn Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’17), 2017. (oral)

Ju Sun, Qing Qu, John Wright (2015). When Are Nonconvex Problems Not Scary?NeurIPS’15 Workshop on Nonconvex Optimization for Machine Learning, 2015.

Ju Sun, Qing Qu, and John Wright (2015). Complete Dictionary Recovery over the SphereIn Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’15), 2015. (oral, best student paper award)