Please also see my Google Scholar Profile for the most updated publications.
* indicates equal contribution
Preprints
Peng Wang*, Huijie Zhang*, Zekai Zhang, Siyi Chen, Yi Ma, Qing Qu. Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering. Arxiv Preprint arXiv:2409.02426, 2024.
Preprint – PDF – BibTex – Code
Wenda Li*, Huijie Zhang*, Qing Qu. Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models. Arxiv Preprint arXiv:2410.21088, 2024.
Preprint – PDF – BibTex – Code
Xiang Li, Soo Min Kwon, Ismail R. Alkhouri, Saiprasad Ravishankar, Qing Qu. Decoupled Data Consistency with Diffusion Purification for Image Restoration. ArXiv Preprint arXiv:2403.06054, 2024.
Preprint – PDF – BibTex
Ismail Alkhouri, Shijun Liang, Cheng-Han Huang, Jimmy Dai, Qing Qu, Saiprasad Ravishankar, Rongrong Wang. SITCOM: Step-wise Triple-Consistent Diffusion Sampling for Inverse Problems. ArXiv Preprint arXiv:2410.04479, 2024.
Preprint – PDF – BibTex
Siyi Chen, Minkyu Choi, Zesen Zhao, Kuan Han, Qing Qu, Zhongming Liu. Unfolding Videos Dynamics via Taylor Expansion. Arxiv Preprint arXiv:2409.02371, 2024.
Preprint – PDF – BibTex
Shijun Liang, Evan Bell, Qing Qu, Rongrong Wang, Saiprasad Ravishankar. Analysis of Deep Image Prior and Exploiting Self-Guidance for Image Reconstruction. ArXiv Preprint arXiv:2402.04097, 2024.
Preprint – PDF – BibTex
Peng Wang*, Xiao Li*, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, Qing Qu. Understanding Deep Representation Learning via Layerwise Feature Compression and Discrimination. ArXiv Preprint arXiv:2311.02960, 2023.
Preprint – PDF – BibTex – Code
2024
Xiang Li, Yixiang Dai, Qing Qu. Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure. Neural Information Processing Systems (NeurIPS’24), 2024.
Preprint – PDF – BibTex – Code
Changwoo Lee, Soo Min Kwon, Qing Qu, Hun-Seok Kim. BLAST: Block-Level Adaptive Structured Matrices for Efficient Deep Neural Network Inference. Neural Information Processing Systems (NeurIPS’24), 2024.
Preprint – PDF – BibTex – Code
Ismail Alkhouri, Shijun Liang, Evan Bell, Qing Qu, Rongrong Wang, Saiprasad Ravishankar. Image Reconstruction Via Autoencoding Sequential Deep Image Prior. Neural Information Processing Systems (NeurIPS’24), 2024.
Preprint – PDF – BibTex – Code
Siyi Chen*, Huijie Zhang*, Minzhe Guo, Yifu Lu, Peng Wang, Qing Qu. Exploring Low-Dimensional Subspaces in Diffusion Models for Controllable Image Editing. Neural Information Processing Systems (NeurIPS’24), 2024.
Preprint – PDF – BibTex – Code – Project Website
Can Yaras, Peng Wang, Laura Balzano, Qing Qu. Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation. International Conference on Machine Learning (ICML’24), 2024. (Oral, top 1.5%)
Preprint – PDF – BibTex – Code
Peng Wang, Huikang Liu, Druv Pai, Yaodong Yu, Zhihui Zhu, Qing Qu, Yi Ma. A Global Geometric Analysis of Maximal Coding Rate Reduction. International Conference on Machine Learning (ICML’24), 2024.
Preprint – PDF – BibTex
Huikang Liu*, Peng Wang*, Longxiu Huang, Qing Qu, Laura Balzano. Symmetric Matrix Completion with ReLU Sampling. International Conference on Machine Learning (ICML’24), 2024.
Preprint – PDF – BibTex
Avrajit Ghosh, Xitong Zhang, Kenneth K. Sun, Qing Qu, Saiprasad Ravishankar, Rongrong Wang. Optimal Eye Surgeon: Finding Image Priors Through Sparse Generators at Initialization. International Conference on Machine Learning (ICML’24), 2024.
Preprint – PDF – BibTex – Code
Jiyi Chen*, Pengyu Li*, Yutong Wang, Pei-Cheng Ku, Qing Qu. Sim2Real in Reconstructive Spectroscopy: Deep Learning with Augmented Device-Informed Data Simulation. APL Machine Learning, Vol.2, No. 3, pp. 036106, Aug. 2024.
Preprint – PDF – BibTex
Juhyeon Kim, Jiyi Chen, Pengyu Li, Yutong Wang, Qing Qu, Pei-Cheng Ku. UV-VIS chip-scale spectropolarimeter. Proc. SPIE 13026, Next-Generation Spectroscopic Technologies XVI, 13026057, 2024.
Preprint – PDF – BibTex
2023
Huijie Zhang*, Yifu Lu*, Ismail Alkhouri, Saiprasad Ravishankar, Dogyoon Song, Qing Qu. Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures. Conference on Computer Vision and Pattern Recognition (CVPR’24), 2024.
Preprint – PDF – BibTex – Code – Project Website
Soo Min Kwon*, Zekai Zhang*, Dogyoon Song, Laura Balzano, Qing Qu. Efficient Low-Dimensional Compression of Overparameterized Models. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics (AISTATS’24), 2024.
Preprint – PDF – BibTex – Code
Pengyu Li*, Xiao Li*, Yutong Wang, Qing Qu. Neural Collapse in Multi-label Learning with Pick-all-label Loss. International Conference on Machine Learning (ICML’24), 2024.
Preprint – PDF – BibTex – Code
Jiachen Jiang*, Jinxin Zhou*, Peng Wang, Qing Qu, Dustin Mixon, Chong You*, Zhihui Zhu*. Generalized Neural Collapse for a Large Number of Classes. International Conference on Machine Learning (ICML’24), 2024.
Preprint – PDF – BibTex
Huijie Zhang*, Jinfan Zhou*, Yifu Lu, Minzhe Guo, Liyue Shen, Qing Qu. The Emergence of Reproducibility and Consistency in Diffusion Models. International Conference on Machine Learning (ICML’24), 2024.
Preprint – PDF – BibTex – Slides
Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu, Yong Jae Lee, Yi Ma. Investigating the Catastrophic Forgetting in Multimodal Large Language Models. Conference on Parsimony and Learning (CPAL’24), 2024.
Preprint – PDF – BibTex
Ismail Alkhouri*, Shijun Liang*, Rongrong Wang, Qing Qu, Saiprasad Ravishankar. Diffusion-based Adversarial Purification for Robust Deep MRI Reconstruction. ArXiv Preprint arXiv:2309.05794, 2023.
Preprint – PDF – BibTex
Can Yaras*, Peng Wang*, Wei Hu, Zhihui Zhu, Laura Balzano, Qing Qu. The Law of Parsimony in Gradient Descent for Learning Deep Linear Networks. ArXiv Preprint arXiv:2306.01154, 2023.
Preprint – PDF – BibTex – Code – Slides
Bowen Song*, Soo Min Kwon*, Zecheng Zhang, Xinyu Hu, Qing Qu, Liyue Shen. Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency. International Conference on Learning Representations (ICLR’24), 2024. (spotlight, top 5%)
Preprint – PDF – BibTex
Evan Bell, Shijun Liang, Qing Qu, Saiprasad Ravishankar. Robust Self-Guided Deep Image Prior. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’23), 2023.
Preprint – PDF – BibTex
2022
Xiao Li*, Sheng Liu*, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda, Zhihui Zhu, Qing Qu. Understanding and Improving Transfer Learning of Deep Models via Neural Collapse. Transactions on Machine Learning Research (TMLR), 2024.
Preprint – PDF – BibTex
Can Yaras*, Peng Wang*, Zhihui Zhu, Laura Balzano, Qing Qu. Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold. Neural Information Processing Systems (NeurIPS’22), 2022.
Preprint – PDF – BibTex – Code
Jinxin Zhou, Chong You, Xiao Li, Kangning Liu, Sheng Liu, Qing Qu, Zhihui Zhu. Are All Losses Created Equal: A Neural Collapse Perspective. Neural Information Processing Systems (NeurIPS’22), 2022.
Preprint – PDF – BibTex – Code
Tuba Sarwar, Can Yaras, Xiang Li, Qing Qu, Pei-Cheng Ku. Miniaturizing a Chip-Scale Spectrometer Using Local Strain Engineering and Total-Variation Regularized Reconstruction. Nano Letters 22 (20), 8174-8180, 2022.
Preprint – PDF – BibTex
Shuo Xie, Jiahao Qiu, Ankita Pasad, Li Du, Qing Qu, Hongyuan Mei. Hidden State Variability of Pretrained Language Models Can Guide Computation Reduction for Transfer Learning. Findings of Empirical Methods in Natural Language Processing (EMNLP), 2022.
Preprint – PDF – BibTex – Code
Sheng Liu, Zhihui Zhu, Qing Qu, Chong You. Robust Training under Label Noise by Over-parameterization. International Conference on Machine Learning (ICML’22), 2022.
Preprint – PDF – BibTex – Code
Jinxin Zhou*, Xiao Li*, Tianyu Ding, Chong You, Qing Qu*, Zhihui Zhu*. On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features. International Conference on Machine Learning (ICML’22), 2022.
Preprint – PDF – BibTex – Code
Peng Wang*, Huikang Liu*, Can Yaras*, Laura Balzano, Qing Qu. Linear Convergence Analysis of Neural Collapse with Unconstrained Features. OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022.
Preprint – PDF – BibTex
2021
Lijun Ding*, Liwei Jiang*, Yudong Chen, Qing Qu, Zhihui Zhu. Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact Recovery. Neural Information Processing Systems (NeurIPS’21), 2021.
Preprint – PDF – BibTex
Zhihui Zhu*, Tianyu Ding*, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, Qing Qu. A Geometric Analysis of Neural Collapse with Unconstrained Features. Neural Information Processing Systems (NeurIPS’21), 2021. (spotlight, top 3%)
Preprint – PDF – Slides – BibTex – Code – Video
Sheng Liu*, Xiao Li*, Yuexiang Zhai, Chong You, Zhihui Zhu, Carlos Fernandez-Granda, Qing Qu. Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training. Neural Information Processing Systems (NeurIPS’21), 2021.
Preprint – PDF – BibTex – Code
Xiao Li*, Shixiang Chen*, Zengde Deng, Qing Qu, Zhihui Zhu, Anthony Man Cho So. Weakly Convex Optimization over Stiefel Manifold Using Riemannian Subgradient-Type Methods. SIAM Journal on Optimization, 31(3): 1605-1634, 2021.
Preprint – PDF – Code – BibTex
2020
Qing Qu, Yuexiang Zhai, Xiao Li, Yuqian Zhang, and Zhihui Zhu. Geometric Analysis of Nonconvex Optimization Landscapes for Overcomplete Learning. International Conference on Learning Representations (ICLR’20), 2020. (oral, top 1.9%)
Preprint – PDF – Slides – BibTex
Chong You*, Zhihui Zhu*, Qing Qu, Yi Ma. Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization. Neural Information Processing Systems (NeurIPS’20), 2020. (spotlight, top 4%)
Preprint – PDF – BibTex – Code
Yenson Lau*, Qing Qu*, Han-wen Kuo, Pengcheng Zhou, Yuqian Zhang, and John Wright. Short and Sparse Deconvolution — A Geometric Approach. International Conference on Learning Representations (ICLR’20), 2020.
Preprint – PDF – Code – Poster – Slides – Website – BibTex
Yuqian Zhang, Qing Qu, John Wright. From Symmetry to Geometry: Tractable Nonconvex Problems. In Submission, 2020.
Preprint – PDF – Slides – BibTex
Qing Qu*, Zhihui Zhu*, Xiao Li, Manolis C. Tsakiris, John Wright, Rene Vidal. Finding the Sparsest Vectors in a Subspace: Theory, Algorithms, and Applications. In Submission, 2020.
Preprint – PDF – Slides – BibTex
2019 & Prior
Qing Qu, Xiao Li, Zhihui Zhu. Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent. SIAM Journal on Imaging Science, 13(3): 1630–1652, 2020. (NeurIPS’19, spotlight, top 3%).
Preprint – PDF – Code – Poster – Slides – BibTex
Qing Qu, Yuqian Zhang, Yonina C. Eldar, John Wright. Convolutional Phase Retrieval via Gradient Descent. IEEE Trans. on Information Theory, 66(3):1785–1821, Mar. 2020. (NeurIPS’17).
Preprint – PDF – Code – Poster – Slides – BibTex
Ju Sun, Qing Qu, John Wright. A Geometric Analysis of Phase Retrieval. Foundations of Computational Mathematics, 18(5):1131–1198, 2018. (ISIT’16)
Preprint – PDF – Code – Slides – BibTex
Ju Sun, Qing Qu, John Wright. Complete Dictionary Recovery over the Sphere I: Overview and the Geometric Picture. IEEE Trans. on Information Theory, 63(2): 853 – 884, Feb. 2017. (ICML’15, best student paper award for SPARS’15).
Preprint – PDF – Code – Poster – BibTex
Ju Sun, Qing Qu, John Wright. Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian Trust-region Method. IEEE Trans. on Information Theory, 63(2): 853 – 884, Feb. 2017.
Preprint – PDF – Code – Poster – BibTex
Qing Qu, Ju Sun, John Wright. Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions. IEEE Trans. on Information Theory, 62(10): 5855 – 5880, Oct. 2016 (NeurIPS’14).
Preprint – PDF – Code – Poster – Slides – BibTex
Qing Qu, Nasser M. Nasrabadi, Trac D. Tran. Subspace Vertex Pursuit: A Fast and Robust Near-Separable Nonnegative Matrix Factorization Method for Hyperspectral Unmixing. IEEE Journal of Selected Topics in Signal Processing, 9(6): 1142 – 1155, Sept. 2015. (ICASSP’14)
PDF – Poster – BibTex
Ju Sun, Qing Qu, John Wright. When Are Nonconvex Problems Not Scary?. NeurIPS’15 Workshop on Nonconvex Optimization for Machine Learning, 2015.
Preprint – PDF – BibTex
Qing Qu, Nasser M. Nasrabadi, Trac D. Tran. Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation. IEEE Transactions on Geoscience and Remote Sensing, 52(7): 4404 – 4423, Jul. 2014. (ICASSP’13)
PDF – Code – Poster – Slides – BibTex
Xiaoxia Sun, Qing Qu, Nasser M. Nasrabadi, Trac D. Tran. Structured Priors for Sparse-Representation-Based Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 11(7): 1235 – 1239, Jul. 2014.
Preprint – PDF – BibTex
Jian Jin, Qing Qu, Yuantao Gu. Robust Zero-point Attraction Least Mean Square Algorithm on Near Sparse System Identification. IET Signal Processing, 7(3): 210 – 218, May 2013.
Preprint – PDF – BibTex